Please Note

These pdf slides are configured for viewing on a computer screen.

Viewing them on hand-held devices may be difficult as they require a "slideshow" mode.

Do not try to print them out as there are many more pages than the number of slides listed at the bottom right of each screen.

Apologies for any inconvenience.

Domain and Range of Functions

Numeracy Workshop

geoff.coates@uwa.edu.au

STUDYSmarter

Introduction

This workshop explores functions further. The emphasis will be on finding the domain and range of a given function and we will introduce function composition.

Drop-in Study Sessions: Monday, Wednesday, Thursday, 10am-12pm, Meeting Room 2204, Second Floor, Social Sciences South Building, every week.

Website: Slides, notes, worksheets.
http://www.studysmarter.uwa.edu.au \rightarrow Numeracy \rightarrow Online Resources

Email: geoff.coates@uwa.edu.au

Workshops coming up
Week 7: Tuesday 16/4 (12-12.45pm): Functions and transformations
Week 8: Friday 26/4 (1-1.45pm): Fixing your maths mistakes

Domain of a Function

The functions we will consider are of the form $f: \mathbb{R} \rightarrow \mathbb{R}$ (ie. real number inputs leading to real number outputs).

Domain of a Function

The functions we will consider are of the form $f: \mathbb{R} \rightarrow \mathbb{R}$ (ie. real number inputs leading to real number outputs).

Sometimes, it doesn't make sense for a function to allow every single real number as an input.

Domain of a Function

The functions we will consider are of the form $f: \mathbb{R} \rightarrow \mathbb{R}$ (ie. real number inputs leading to real number outputs).

Sometimes, it doesn't make sense for a function to allow every single real number as an input.

Example: The function $f(x)=\sqrt{x}$ does not allow

Domain of a Function

The functions we will consider are of the form $f: \mathbb{R} \rightarrow \mathbb{R}$ (ie. real number inputs leading to real number outputs).

Sometimes, it doesn't make sense for a function to allow every single real number as an input.

Example: The function $f(x)=\sqrt{x}$ does not allow negative numbers to be input.

Domain of a Function

The functions we will consider are of the form $f: \mathbb{R} \rightarrow \mathbb{R}$ (ie. real number inputs leading to real number outputs).

Sometimes, it doesn't make sense for a function to allow every single real number as an input.

Example: The function $f(x)=\sqrt{x}$ does not allow negative numbers to be input.

The Domain of a function is the set of all the numbers allowed for input.

Domain of a Function

The functions we will consider are of the form $f: \mathbb{R} \rightarrow \mathbb{R}$ (ie. real number inputs leading to real number outputs).

Sometimes, it doesn't make sense for a function to allow every single real number as an input.

Example: The function $f(x)=\sqrt{x}$ does not allow negative numbers to be input.

The Domain of a function is the set of all the numbers allowed for input.

$$
\begin{aligned}
& \text { The domain of } f(x)=\sqrt{x} \text { is (in set notation) } \\
& \qquad D=\{x \in \mathbb{R}: x \geq 0\}
\end{aligned}
$$

Domain of a Function

The functions we will consider are of the form $f: \mathbb{R} \rightarrow \mathbb{R}$ (ie. real number inputs leading to real number outputs).

Sometimes, it doesn't make sense for a function to allow every single real number as an input.

Example: The function $f(x)=\sqrt{x}$ does not allow negative numbers to be input.

The Domain of a function is the set of all the numbers allowed for input.

$$
\begin{aligned}
& \text { The domain of } f(x)=\sqrt{x} \text { is (in set notation) } \\
& \qquad D=\{x \in \mathbb{R}: x \geq 0\}
\end{aligned}
$$

Alternatively, we can write the domain in interval notation:

$$
D=[0, \infty)
$$

Domain of a Function

Example: Consider the function:

$$
f(x)=\frac{2}{3-x}
$$

Domain of a Function

Example: Consider the function:

$$
f(x)=\frac{2}{3-x}
$$

The domain of the above function is

Domain of a Function

Example: Consider the function:

$$
f(x)=\frac{2}{3-x}
$$

The domain of the above function is $D=\{x \in \mathbb{R}: x \neq 3\}$.

Domain of a Function

There are basically two main rules for finding the domain of a function.

Domain of a Function

There are basically two main rules for finding the domain of a function.

- Do not take the square root of a negative number.

Domain of a Function

There are basically two main rules for finding the domain of a function.

- Do not take the square root of a negative number.
- Do not divide by zero.

Domain of a Function

There are basically two main rules for finding the domain of a function.

- Do not take the square root of a negative number.
- Do not divide by zero.

Look out for division and square roots!

Domain of a Function

What is the domain of $f(x)=\sqrt{7-x} \quad ?$

Domain of a Function

What is the domain of $f(x)=\sqrt{7-x} \quad ?$
We know that the thing under the square root must be non-negative i.e. greater than or equal to zero.

$$
7-x \geq 0
$$

Domain of a Function

What is the domain of $f(x)=\sqrt{7-x} \quad ?$
We know that the thing under the square root must be non-negative i.e. greater than or equal to zero.

$$
7-x \geq 0
$$

Rearranging this gives us $x \leq 7$.

Domain of a Function

What is the domain of $f(x)=\sqrt{7-x} \quad ?$
We know that the thing under the square root must be non-negative i.e. greater than or equal to zero.

$$
7-x \geq 0
$$

Rearranging this gives us $x \leq 7$.

So we write

$$
D=\{x \in \mathbb{R}: x \leq 7\}
$$

Domain of a Function

What is the domain of $f(x)=\sqrt{7-x} \quad ?$
We know that the thing under the square root must be non-negative i.e. greater than or equal to zero.

$$
7-x \geq 0
$$

Rearranging this gives us $x \leq 7$.
So we write

$$
D=\{x \in \mathbb{R}: x \leq 7\}
$$

or

$$
D=(-\infty, 7]
$$

Domain of a Function

What is the domain of $f(x)=\frac{1}{x^{2}-16}$

Domain of a Function

$$
\text { What is the domain of } f(x)=\frac{1}{x^{2}-16}
$$?

We know that the thing we divide by must be non-zero.

$$
x^{2}-16 \neq 0
$$

Domain of a Function

$$
\text { What is the domain of } f(x)=\frac{1}{x^{2}-16}
$$?

We know that the thing we divide by must be non-zero.

$$
x^{2}-16 \neq 0
$$

Solving this gives us $x \neq-4,4$.

Domain of a Function

$$
\text { What is the domain of } f(x)=\frac{1}{x^{2}-16}
$$

We know that the thing we divide by must be non-zero.

$$
x^{2}-16 \neq 0
$$

Solving this gives us $x \neq-4,4$.
So we write

$$
D=\{x \in \mathbb{R}: x \neq-4,4\}
$$

Domain of a Function

$$
\text { What is the domain of } f(x)=\frac{1}{x^{2}-16} \quad ?
$$

We know that the thing we divide by must be non-zero.

$$
x^{2}-16 \neq 0
$$

Solving this gives us $x \neq-4,4$.

So we write

$$
\begin{gathered}
D=\{x \in \mathbb{R}: x \neq-4,4\} \\
\text { or } \\
D=(-\infty,-4) \cup(-4,4) \cup(4, \infty)
\end{gathered}
$$

The Range

The Domain of a function is what can go in (input).

The Domain of a function is what can go in (input).
The Range of a function is what can come out (output).

The Range

The Domain of a function is what can go in (input).
The Range of a function is what can come out (output).
The range can be significantly harder to work out than the domain.

Domain and Range: Examples

Consider the function $f(x)=x^{2}+2$
What is the domain of f ?

Domain and Range: Examples

Consider the function $f(x)=x^{2}+2$
What is the domain of f ?

$$
D=\mathbb{R}
$$

Domain and Range: Examples

Consider the function $f(x)=x^{2}+2$
What is the domain of f ?

$$
D=\mathbb{R}
$$

What is the range?

Domain and Range: Examples

Consider the function $f(x)=x^{2}+2$

What is the domain of f ?

$$
D=\mathbb{R}
$$

What is the range?
Option: We might recognise that the " $x^{2 "}$ term always returns a number ≥ 0 so the smallest output must be $0^{2}+2=2$.

Domain and Range: Examples

$$
\text { Consider the function } f(x)=x^{2}+2
$$

What is the domain of f ?

$$
D=\mathbb{R}
$$

What is the range?
Option: We might recognise that the " $x^{2 "}$ term always returns a number ≥ 0 so the smallest output must be $0^{2}+2=2$.

Option: We may recognise the function as a quadratic which produces a parabolic graph (whose turning point/minimum occurs when $y=f(x)=2$).

$$
R=\{x \in \mathbb{R}: x \geq 2\}=[2, \infty)
$$

Domain and Range: Examples

Tip: This notion of domain and range can be made clearer by examining the graph of $y=x^{2}+2$.

Domain and Range: Examples

Tip: This notion of domain and range can be made clearer by examining the graph of

$$
y=x^{2}+2
$$

Domain and Range: Examples

Tip: This notion of domain and range can be made clearer by examining the graph of

$$
y=x^{2}+2
$$

Domain and Range: Examples

Tip: This notion of domain and range can be made clearer by examining the graph of

$$
y=x^{2}+2
$$

Domain and Range: Examples

Tip: This notion of domain and range can be made clearer by examining the graph of $y=x^{2}+2$.

Domain and Range: Examples

Tip: This notion of domain and range can be made clearer by examining the graph of

$$
y=x^{2}+2
$$

Domain and Range: Examples

Tip: This notion of domain and range can be made clearer by examining the graph of

$$
y=x^{2}+2
$$

Domain and Range: Examples

The domain is simply all of the points which lie above/below the curve.

Domain and Range: Examples

The domain is simply all of the points which lie above/below the curve.
The range is simply all of the points which lie left/right of the curve.

Function Composition

As seen before, functions are "machines" which take in numbers and output new numbers.

Function Composition

As seen before, functions are "machines" which take in numbers and output new numbers.

What if the numbers which are output are then fed into a new function, to be output as something else?

Function Composition

As seen before, functions are "machines" which take in numbers and output new numbers.

What if the numbers which are output are then fed into a new function, to be output as something else?

This is the idea of function composition.

Function Composition

As seen before, functions are "machines" which take in numbers and output new numbers.

What if the numbers which are output are then fed into a new function, to be output as something else?

This is the idea of function composition.

Function Composition

As seen before, functions are "machines" which take in numbers and output new numbers.

What if the numbers which are output are then fed into a new function, to be output as something else?

This is the idea of function composition.

Function Composition

As seen before, functions are "machines" which take in numbers and output new numbers.

What if the numbers which are output are then fed into a new function, to be output as something else?

This is the idea of function composition.

Function Composition

As seen before, functions are "machines" which take in numbers and output new numbers.

What if the numbers which are output are then fed into a new function, to be output as something else?

This is the idea of function composition.

Function Composition

As seen before, functions are "machines" which take in numbers and output new numbers.

What if the numbers which are output are then fed into a new function, to be output as something else?

This is the idea of function composition.

Function Composition

As seen before, functions are "machines" which take in numbers and output new numbers.

What if the numbers which are output are then fed into a new function, to be output as something else?

This is the idea of function composition.

Function Composition

As seen before, functions are "machines" which take in numbers and output new numbers.

What if the numbers which are output are then fed into a new function, to be output as something else?

This is the idea of function composition.

Function Composition

Suppose we have a function which takes real numbers and squares them:

$$
f(x)=x^{2}
$$

Function Composition

Suppose we have a function which takes real numbers and squares them:

$$
f(x)=x^{2}
$$

Suppose we also have a function which takes real numbers, doubles them and adds 5 :

$$
g(x)=2 x+5
$$

Function Composition

Suppose we have a function which takes real numbers and squares them:

$$
f(x)=x^{2}
$$

Suppose we also have a function which takes real numbers, doubles them and adds 5:

$$
g(x)=2 x+5
$$

There are two ways in which we can compose these functions, by doing one first and then the other.

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \bigcirc g$ " refers to the function you get by applying g first and then f.

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \bigcirc g$ " refers to the function you get by applying g first and then f.

$$
(f \circ g)(x)=
$$

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \bigcirc g$ " refers to the function you get by applying g first and then f.

$$
(f \circ g)(x)=g(x)
$$

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \bigcirc g$ " refers to the function you get by applying g first and then f.

$$
(f \circ g)(x)=f(g(x))
$$

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \bigcirc g$ " refers to the function you get by applying g first and then f.

$$
(f \circ g)(x)=f(g(x))=f(2 x+5)
$$

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \bigcirc g$ " refers to the function you get by applying g first and then f.

$$
(f \circ g)(x)=f(g(x))=f(2 x+5)=(2 x+5)^{2}
$$

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \circ g$ " refers to the function you get by applying g first and then f.

$$
(f \circ g)(x)=f(g(x))=f(2 x+5)=(2 x+5)^{2}
$$

The notation " $g \bigcirc f$ " refers to the function you get by applying f first and then g.

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \circ g$ " refers to the function you get by applying g first and then f.

$$
(f \circ g)(x)=f(g(x))=f(2 x+5)=(2 x+5)^{2}
$$

The notation " $g \circ f$ " refers to the function you get by applying f first and then g.

$$
(g \circ f)(x)=
$$

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \circ g$ " refers to the function you get by applying g first and then f.

$$
(f \circ g)(x)=f(g(x))=f(2 x+5)=(2 x+5)^{2}
$$

The notation " $g \circ f$ " refers to the function you get by applying f first and then g.

$$
(g \bigcirc f)(x)=f(x)
$$

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \circ g$ " refers to the function you get by applying g first and then f.

$$
(f \circ g)(x)=f(g(x))=f(2 x+5)=(2 x+5)^{2}
$$

The notation " $g \circ f$ " refers to the function you get by applying f first and then g.

$$
(g \bigcirc f)(x)=g(f(x))
$$

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \circ g$ " refers to the function you get by applying g first and then f.

$$
(f \circ g)(x)=f(g(x))=f(2 x+5)=(2 x+5)^{2}
$$

The notation " $g \circ f$ " refers to the function you get by applying f first and then g.

$$
(g \bigcirc f)(x)=g(f(x))=g\left(x^{2}\right)
$$

Function Composition

$$
f(x)=x^{2} \quad g(x)=2 x+5
$$

The notation " $f \circ g$ " refers to the function you get by applying g first and then f.

$$
(f \circ g)(x)=f(g(x))=f(2 x+5)=(2 x+5)^{2}
$$

The notation " $g \circ f$ " refers to the function you get by applying f first and then g.

$$
(g \bigcirc f)(x)=g(f(x))=g\left(x^{2}\right)=2 x^{2}+5
$$

Function Composition

$$
\text { Let } f(x)=\frac{2}{x-3} \text { and } g(x)=x^{2}
$$

Find $(f \circ g)$ and $(g \circ f)$.

Function Composition

$$
\text { Let } f(x)=\frac{2}{x-3} \text { and } g(x)=x^{2}
$$

Find $(f \circ g)$ and $(g \circ f)$.

$$
(f \circ g)(x)
$$

Function Composition

$$
\text { Let } f(x)=\frac{2}{x-3} \text { and } g(x)=x^{2}
$$

Find $(f \circ g)$ and $(g \circ f)$.

$$
(f \circ g)(x)=f(g(x))
$$

Function Composition

$$
\text { Let } f(x)=\frac{2}{x-3} \text { and } g(x)=x^{2}
$$

Find $(f \circ g)$ and $(g \circ f)$.

$$
(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)
$$

Function Composition

$$
\text { Let } f(x)=\frac{2}{x-3} \text { and } g(x)=x^{2}
$$

Find $(f \circ g)$ and $(g \circ f)$.

$$
(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=\frac{2}{x^{2}-3}
$$

Function Composition

$$
\text { Let } f(x)=\frac{2}{x-3} \text { and } g(x)=x^{2}
$$

Find $(f \circ g)$ and $(g \circ f)$.

$$
(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=\frac{2}{x^{2}-3}
$$

$$
(g \circ f)(x)=g(f(x))
$$

Function Composition

$$
\text { Let } f(x)=\frac{2}{x-3} \text { and } g(x)=x^{2}
$$

Find $(f \circ g)$ and $(g \circ f)$.

$$
(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=\frac{2}{x^{2}-3}
$$

$$
(g \circ f)(x)=g(f(x))=g\left(\frac{2}{x-3}\right)
$$

Function Composition

$$
\text { Let } f(x)=\frac{2}{x-3} \text { and } g(x)=x^{2}
$$

Find $(f \circ g)$ and $(g \circ f)$.

$$
(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=\frac{2}{x^{2}-3}
$$

$$
(g \circ f)(x)=g(f(x))=g\left(\frac{2}{x-3}\right)=\left(\frac{2}{x-3}\right)^{2}
$$

Function Composition

$$
\text { Let } f(x)=\sqrt{x-4} \text { and } g(x)=x^{2}+4 \text {. }
$$

Function Composition

$$
\text { Let } f(x)=\sqrt{x-4} \text { and } g(x)=x^{2}+4 .
$$

(i) Find $(g \circ f)$.

Function Composition

$$
\text { Let } f(x)=\sqrt{x-4} \text { and } g(x)=x^{2}+4 \text {. }
$$

(i) Find $(g \circ f)$.

$$
(g \circ f)(x)=g(f(x))=g(\sqrt{x-4})
$$

Function Composition

$$
\text { Let } f(x)=\sqrt{x-4} \text { and } g(x)=x^{2}+4
$$

(i) Find $(g \circ f)$.

$$
(g \circ f)(x)=g(f(x))=g(\sqrt{x-4})=(\sqrt{x-4})^{2}+4
$$

Function Composition

$$
\text { Let } f(x)=\sqrt{x-4} \text { and } g(x)=x^{2}+4
$$

(i) Find $(g \circ f)$.

$$
(g \bigcirc f)(x)=g(f(x))=g(\sqrt{x-4})=(\sqrt{x-4})^{2}+4
$$

It's tempting to simplify this function:

$$
(g \circ f)(x)=(\sqrt{x-4})^{2}+4=x-4+4=x
$$

but this makes it harder to answer the next question.

Function Composition

$$
\text { Let } f(x)=\sqrt{x-4} \text { and } g(x)=x^{2}+4 .
$$

(i) Find $(g \circ f)$.

$$
(g \bigcirc f)(x)=g(f(x))=g(\sqrt{x-4})=(\sqrt{x-4})^{2}+4
$$

It's tempting to simplify this function:

$$
(g \circ f)(x)=(\sqrt{x-4})^{2}+4=x-4+4=x
$$

but this makes it harder to answer the next question.
(ii) What is the domain of $(g \bigcirc f)$?

Function Composition

$$
\text { Let } f(x)=\sqrt{x-4} \text { and } g(x)=x^{2}+4
$$

(i) Find $(g \circ f)$.

$$
(g \circ f)(x)=g(f(x))=g(\sqrt{x-4})=(\sqrt{x-4})^{2}+4
$$

It's tempting to simplify this function:

$$
(g \circ f)(x)=(\sqrt{x-4})^{2}+4=x-4+4=x
$$

but this makes it harder to answer the next question.
(ii) What is the domain of $(g \circ f)$?

The structure $(g \bigcirc f)(x)$ includes $\sqrt{x-4}$, even though it doesn't appear in the simplified version. This means that the domain of $(g \bigcirc f)(x)$ is also

$$
[4, \infty)
$$

Function Composition

(iii) Find the range of $(g \bigcirc f)$.

Function Composition

(iii) Find the range of $(g \bigcirc f)$.

The simplified version of this function makes the range easy to find:

$$
(g \bigcirc f)(x)=x
$$

but remember that only $x \geq 4$ are allowable inputs.

Function Composition

(iii) Find the range of $(g \bigcirc f)$.

The simplified version of this function makes the range easy to find:

$$
(g \bigcirc f)(x)=x
$$

but remember that only $x \geq 4$ are allowable inputs.
Hence, the range is

$$
[4, \infty)
$$

Function Composition

Using STUDYSmarter Resources

This resource was developed for UWA students by the STUDYSmarter team for the numeracy program. When using our resources, please retain them in their original form with both the STUDYSmarter heading and the UWA crest.

The University of WESTERN AUSTRALIA
$\oplus($ (1) Θ

