Graphing Parabolas Worksheet (Simple)

- 1. Function to be graphed:
- 2. Which way up is the parabola? For $y = ax^2 + bx + c$, is a positive (concave up \cup , smiley face \bigcirc) or is *a* negative (concave down \cap , frowny face \otimes)? Sketch the parabola's shape:
- 3. Calculate table of values (change x-values if necessary):

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
у											

4. Can you factorise the relation? This will give the *x*-intercepts. There may be 2, 1 or 0 *x*-intercepts. (Or use $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$)

<u>Coordinates: (,), (,)</u> Coordinates: (,) 5. Find the *y*-intercept. From table or let x = 0, then y = 06. Can you find the axis of symmetry – half way between the two x-intercepts, or given by $x = \frac{-b}{2a}$

$$x = \frac{-()}{2()} = ----=$$

7. Find the turning point by substituting the axis of symmetry x value into the relation to find y.

x-value =

V =

Coordinates: (

8. Sketch the graph by drawing x- and y-axes scaled to suit your calculated values, then plotting the *x*-intercept(s), *y*-intercept, and the turning point, then joining with a smooth parabolic curve:

