Graphing Parabolas Worksheet (Simple)

1. Function to be graphed: \qquad
2. Which way up is the parabola? For $y=a x^{2}+b x+c$, is a positive (concave up \cup, smiley face ()) or is a negative (concave down \cap, frowny face $*$)? Sketch the parabola's shape:
3. Calculate table of values (change x-values if necessary):

\boldsymbol{x}	-5	-4	-3	-2	-1	0	1	2	3	4	5
\mathbf{y}											

4. Can you factorise the relation? This will give the x-intercepts. There may be 2,1 or $0 x$-intercepts. (Or use $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$)

Coordinates: $(),,($,

5. Find the y-intercept. From table or let $x=0$, then $y=$

Coordinates: (,)
6. Can you find the axis of symmetry - half way between the two x-intercepts, or given by $x=\frac{-b}{2 a}$ $x=\frac{-(\quad)}{2(\quad)}=$
7. Find the turning point by substituting the axis of symmetry x value into the relation to find y .
x-value $=$
$y=$
Coordinates: (\qquad ,
8. Sketch the graph by drawing x - and y-axes scaled to suit your calculated values, then plotting the x-intercept(s), y-intercept, and the turning point, then joining with a smooth parabolic curve:

