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Introduction

These slides are designed to review integration by the method of partial fractions.

Drop-in Study Sessions: Monday, Wednesday, Thursday, 10am-12pm, Meeting Room
2204, Second Floor, Social Sciences South Building, every week.

Website: Slides, notes, worksheets.

http://www.studysmarter.uwa.edu.au → Numeracy → Online Resources

Email: geoff.coates@uwa.edu.au

Next session specifically for MATH1002

Week 12: Tuesday 21/5 (12-12.45pm): Laplace transforms and the Heaviside function
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The Idea

We know how to integrate polynomials such as

5x2 + 2x − 4

The method of partial fractions is a useful tool which allows us to integrate quotients of
polynomials, such as:

2x2 + 3

x3 − 8
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Important Integrals

To use partial fractions, you will need to know a few important integrals:

∫
f ′(x)

f (x)
dx = ln |f (x)|+ C

Example:∫
4x + 7

2x2 + 7x − 9
dx = ln |2x2 + 7x − 9|+ C

So, it’s easy to integrate fractions where the numerator is the derivative of the
denominator.
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Important Integrals

Another important integral is:

∫
a

a2 + x2
dx = arctan

(x
a

)
+ C

Example:∫
4

16 + x2
dx = arctan

(x
4

)
+ C

geoff.coates@uwa.edu.au Integration by Partial Fractions 6 / 30



Important Integrals

Another important integral is:

∫
a

a2 + x2
dx = arctan

(x
a

)
+ C

Example:∫
4

16 + x2
dx = arctan

(x
4

)
+ C

geoff.coates@uwa.edu.au Integration by Partial Fractions 6 / 30



Rearranging

Sometimes, the numerator is almost the derivative of the denominator.

Example:∫
8x + 14

2x2 + 7x − 9
dx

In this case, we need to tweak the numerator so that it is the derivative of the
denominator. We do this by playing around with factors.

2

∫
4x + 7

2x2 + 7x − 9
dx

From this, we get:

2 ln |2x2 + 7x − 9|+ C
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Constant over Linear

Integrating a constant over a linear is easy to do!

∫
5

2x − 3
dx

Just scale the top so that it is the derivative of the bottom:

5

2

∫
2

2x − 3
dx

Now integrating is easy:

5

2
ln |2x − 3|+ C
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Quotients of Linears

How do we integrate a linear over a linear?

Example:∫
8x + 14

3x − 9
dx

If we rewrite the top so that it contains a (3x − 9), we can cancel the linear part out.

Start by manipulating the coefficient of x :

8

3
(3x − 9).

If we expand this we get

8x − 24

which isn’t exactly equal to 8x + 14. So we adjust the constant:

8

3
(3x − 9) + 38
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Quotients of Linears

So, we can integrate∫
8x + 14

3x − 9
dx

by writing it as∫ 8
3
(3x − 9) + 38

3x − 9
dx

and separating to get∫ 8
3
(3x − 9)

3x − 9
+

38

3x − 9
dx

which equals∫
8

3
+

38

3

3

3x − 9
dx
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Quotients of Linears

We can now easily integrate∫
8

3
+

38

3

3

3x − 9
dx

to obtain:

8

3
x +

38

3
ln |3x − 9|+ C

This method of integration holds for all quotients of linears.
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Quadratics on the Bottom

Integrating a linear over a quadratic is fairly easy.∫
2x + 4

2x2 + 3x + 5
dx

The derivative of a quadratic is a linear, so we just need to play with the top. We want
to rewrite the top in terms of the derivative of the bottom, which is 4x + 3.

Start by manipulating the coefficient of x :

1

2
(4x + 3)

If we expand this we get 2x + 3
2

which is not quite the same as 2x + 4.
So we adjust the constant:

2x + 4 =
1

2
(4x + 3) +

5

2
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Quadratics on the Bottom

So, rewriting the top gives us:∫ 1
2
(4x + 3) + 5

2

2x2 + 3x + 5
dx

Break this into two integrals to get:

1

2

∫
4x + 3

2x2 + 3x + 5
dx +

5

2

∫
1

2x2 + 3x + 5
dx

The first integral is equal to:

1

2
ln |2x2 + 3x + 5|+ C

The second integral is a constant over a quadratic, similiar to the arctan integral that we
encountered earlier!
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Quadratics on the Bottom

5

2

∫
1

2x2 + 3x + 5
dx

Factoring out 2 from the bottom gives

5

4

∫
1

x2 + 3
2
x + 5

2

dx

Completing the square gives

5

4

∫
1

(x + 3
4
)2 + 31

16

dx

This can be integrated using the arctan integral we saw before.
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Partial Fractions

We now know how to integrate:

constant

linear
,

linear

linear
,

constant

quadratic
,

linear

quadratic

It turns out that these are the only forms we need when solving integrals which are the
quotient of polynomials of any order. Why?

For quotients where the top polynomial is of equal or higher order than the bottom,
use polynomial division to convert them to a polynomial plus a remainder.

Any polynomial with real coefficients can be factored into a product of linear and
quadratic factors with real coefficients. (This is a consequence of the theorem that
such polynomials are the product of linear factors with complex coefficients.)

A theorem from advanced algebra.
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Partial Fractions

We will see how this is done with factored polynomials.

Suppose we are asked to use partial fractions on the following rational expression:

2x + 5

x2 + 3x + 2

When we use partial fractions, we should make sure that all quadratics are factorised (if
possible).

2x + 5

(x + 1)(x + 2)

There is a theorem which says that both linear terms on the bottom can be used to form
separate fractions with a constant on top (ie. “partial fractions”):

2x + 5

(x + 1)(x + 2)
=

A

x + 1
+

B

x + 2
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Partial Fractions

2x + 5

(x + 1)(x + 2)
=

A

x + 1
+

B

x + 2

Multiply through by the denominator on the LHS to get:

2x + 5 = A(x + 2) + B(x + 1)

Now we substitute in convenient x values:

x = −2 : 2(−2) + 5 = A(−2 + 2) + B(−2 + 1)

which gives B = −1, and

x = −1 : 2(−1) + 5 = A(−1 + 2) + B(−1 + 1)

which gives A = 3.
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Partial Fractions

Therefore, the use of partial fractions has allowed us to see the equivalence:

2x + 5

(x + 1)(x + 2)
=

3

x + 1
+
−1

x + 2

Integrating the expression on the left is easy now; we simply integrate the two terms on
the right which we know how to do!
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Partial Fractions

So, each unique single linear factor gives rise to a new term.

What about if we are required to split up:

2x + 5

(x + 1)3(x + 2)

We deal with repeated linear factors by building up as follows:

2x + 5

(x + 1)3(x + 2)
=

A

x + 1
+

B

(x + 1)2
+

C

(x + 1)3
+

D

(x + 2)

Once again, multiply through by the denominator of the LHS and substitute in
convenient x values and solve for A,B,C ,D.
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Partial Fractions: Irreducible Quadratics

So linear factors are easy!

Often, a quadratic will not reduce into linear factors. Consider:

2x2 + 6

(x + 2)(x − 1)(x2 + 1)

The x2 + 1 term is irreducible (imaginary roots) and thus will not reduce into linears. We
deal with this as follows:

2x2 + 6

(x + 2)(x − 1)(x2 + 1)
=

A

x + 2
+

B

x − 1
+

Cx + D

x2 + 1

Once again, convenient values of x will do the trick.
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Partial Fractions: Irreducible Quadratics

What about (dare I say it) repeated quadratics?!

2x2 + 6

(x + 2)(x − 1)2(x2 + 1)3

Same as repeated linears - we simply build up to the relevant power!

2x2 + 6

(x + 2)(x − 1)2(x2 + 1)3
=

A

x + 2
+

B

x − 1
+

C

(x − 1)2
+

Dx + E

x2 + 1
+

Fx + G

(x2 + 1)2
+

Hx + I

(x2 + 1)3

Once again, multiplying through by denominator of LHS and substituting in convenient
values of x will do the trick.
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Integration by Partial Fractions: Exercises

Evaluate the following integrals. (There are worked solutions on the following pages).

Exercise 1:

∫
2x + 1

x2 − 11x + 30
dx

Exercise 2:

∫
3 + 2x

(4x + 2)(2x + 3)
dx

Exercise 3:

∫
x4 + 2x3 + 18x2 + 30x + 13

(x + 2)2(x − 3)
dx
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Solution to Exercise 1

This one is linear over quadratic so we could do it by manipulating the top line to be the
derivative of the bottom line. However, the bottom line factorizes so partial fractions

turns out to be quicker.

2x + 1

x2 − 11x + 30
=

2x + 1

(x − 5)(x − 6)

=
A

x − 5
+

B

x − 6

Multiply through by the denominator to get:

2x + 1 = A(x − 6) + B(x − 5)

Now we substitute in convenient x values:

x = 5 : 2(5) + 1 = A(5− 6) + B(5− 5)

which gives A = −11, and

x = 6 : 2(6) + 1 = −11(6− 6) + B(6− 5)

which gives B = 13.
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Solution to Exercise 1

Now

∫
2x + 1

(x − 5)(x − 6)
dx = −11

∫
1

x − 5
dx + 13

∫
1

x − 6
dx

= −11 ln |x − 5|+ 13 ln |x − 6|+ C
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Solution to Exercise 2

3 + 2x

(4x + 2)(2x + 3)
=

A

4x + 2
+

B

2x + 3

Multiply through by the denominator to get:

3 + 2x = A(2x + 3) + B(4x + 2)

Now we substitute in convenient x values:

x = − 3
2

: 3 + 2(− 3
2
) = A(2(− 3

2
) + 3) + B(4(− 3

2
) + 2)

which gives B = 0, and

x = 0 : 3 + 2(0) = A(2(0) + 3)

which gives A = 1.
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Solution to Exercise 2

This is an odd result! It seems that

∫
3 + 2x

(4x + 2)(2x + 3)
dx =

∫
1

4x + 2
dx .

In other words, we have just cancelled out the common factor of (2x + 3)!

If we had spotted that at the beginning, we would not have had to resort to partial
fractions. (However, it’s nice to know that this method arrives at this more obvious

answer.)

So the solution is∫
1

4x + 2
dx =

1

4
ln |4x + 2|+ C
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Solution to Exercise 3

The numerator is of higher degree (4) than the denominator (3). It also has no
easy-to-find linear factors, so start with polynomial division:

(x + 2)2(x − 3) = x3 + x2 − 8x − 12

x + 1

x3 + x2 − 8x − 12 x4 + 2x3 + 18x2 + 30x + 13

− x4 + x3 − 8x2 − 12x

x3 + 26x2 + 42x + 13

− x3 + x2 − 8x − 12

25x2 + 50x + 25

Hence

∫
x4 + 2x3 + 18x2 + 30x + 13

(x + 2)2(x − 3)
dx =

∫
x + 1dx +

∫
25x2 + 50x + 25

(x + 2)2(x − 3)
dx
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easy-to-find linear factors, so start with polynomial division:

(x + 2)2(x − 3) = x3 + x2 − 8x − 12

x

+ 1

x3 + x2 − 8x − 12 x4 + 2x3 + 18x2 + 30x + 13

− x4 + x3 − 8x2 − 12x

x3 + 26x2 + 42x + 13

− x3 + x2 − 8x − 12
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Solution to Exercise 3

25x2 + 50x + 25

(x + 2)2(x − 3)
=

A

x + 2
+

B

(x + 2)2
+

C

x − 3

Multiply through by the denominator to get:

25x2 + 50x + 25 = A(x + 2)(x − 3) + B(x − 3) + C(x + 2)2

Now we substitute in convenient x values:

x = 3 : 25(3)2 + 50(3) + 25 = A(3 + 2)(3− 3) + B(3− 3) + C(3 + 2)2

which gives C = 16,

x = −2 : 25(−2)2 +50(−2)+25 = A(−2 + 2)(−2− 3) + B(−2−3) + 16(−2 + 2)2

which gives B = −5, and

x = 0 : 25(0)2 + 50(0) + 25 = A(0 + 2)(0− 3)− 5(0− 3) + 16(0 + 2)2

which gives A = 9.
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Solution to Exercise 3

So, finally,

∫
x4 + 2x3 + 18x2 + 30x + 13

(x + 2)2(x − 3)

=

∫
x + 1dx +

∫
25x2 + 50x + 25

(x + 2)2(x − 3)
dx

=

∫
x + 1dx + 9

∫
1

x + 2
dx − 5

∫
1

(x + 2)2
dx + 16

∫
1

x − 3
dx

=
1

2
x2 + x + 9 ln |x + 2| − 5×− 1

(x + 2)
+ 16 ln |x − 3|+ C

=
1

2
x2 + x + 9 ln |x + 2|+ 5

x + 2
+ 16 ln |x − 3|+ C
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Using STUDYSmarter Resources

This resource was developed for UWA students by the STUDYSmarter team for the
numeracy program. When using our resources, please retain them in their original form

with both the STUDYSmarter heading and the UWA crest.
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