Please Note

These pdf slides are configured for viewing on a computer screen.

Viewing them on hand-held devices may be difficult as they require a "slideshow" mode.

Do not try to print them out as there are many more pages than the number of slides listed at the bottom right of each screen.

Apologies for any inconvenience.

Integration by Partial Fractions

Numeracy Workshop

geoff.coates@uwa.edu.au

STUDYSmarter

Introduction

These slides are designed to review integration by the method of partial fractions.
Drop-in Study Sessions: Monday, Wednesday, Thursday, 10am-12pm, Meeting Room 2204, Second Floor, Social Sciences South Building, every week.

Website: Slides, notes, worksheets.
http://www.studysmarter.uwa.edu.au \rightarrow Numeracy \rightarrow Online Resources

Email: geoff.coates@uwa.edu.au

Next session specifically for MATH1002
Week 12: Tuesday $21 / 5$ (12-12.45pm): Laplace transforms and the Heaviside function

We know how to integrate polynomials such as

$$
5 x^{2}+2 x-4
$$

The Idea

We know how to integrate polynomials such as

$$
5 x^{2}+2 x-4
$$

The method of partial fractions is a useful tool which allows us to integrate quotients of polynomials, such as:

$$
\frac{2 x^{2}+3}{x^{3}-8}
$$

Important Integrals

To use partial fractions, you will need to know a few important integrals:

Important Integrals

To use partial fractions, you will need to know a few important integrals:

$$
\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C
$$

Important Integrals

To use partial fractions, you will need to know a few important integrals:

$$
\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C
$$

Example:

$$
\int \frac{4 x+7}{2 x^{2}+7 x-9} d x=\ln \left|2 x^{2}+7 x-9\right|+C
$$

Important Integrals

To use partial fractions, you will need to know a few important integrals:

$$
\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C
$$

Example:

$$
\int \frac{4 x+7}{2 x^{2}+7 x-9} d x=\ln \left|2 x^{2}+7 x-9\right|+C
$$

So, it's easy to integrate fractions where the numerator is the derivative of the denominator.

Important Integrals

Another important integral is:

$$
\int \frac{a}{a^{2}+x^{2}} d x=\arctan \left(\frac{x}{a}\right)+C
$$

Important Integrals

Another important integral is:

$$
\int \frac{a}{a^{2}+x^{2}} d x=\arctan \left(\frac{x}{a}\right)+C
$$

Example:

$$
\int \frac{4}{16+x^{2}} d x=\arctan \left(\frac{x}{4}\right)+C
$$

Rearranging

Sometimes, the numerator is almost the derivative of the denominator.

Example:

$$
\int \frac{8 x+14}{2 x^{2}+7 x-9} d x
$$

Rearranging

Sometimes, the numerator is almost the derivative of the denominator.

Example:

$$
\int \frac{8 x+14}{2 x^{2}+7 x-9} d x
$$

In this case, we need to tweak the numerator so that it is the derivative of the denominator. We do this by playing around with factors.

Rearranging

Sometimes, the numerator is almost the derivative of the denominator.

Example:

$$
\int \frac{8 x+14}{2 x^{2}+7 x-9} d x
$$

In this case, we need to tweak the numerator so that it is the derivative of the denominator. We do this by playing around with factors.

$$
2 \int \frac{4 x+7}{2 x^{2}+7 x-9} d x
$$

Rearranging

Sometimes, the numerator is almost the derivative of the denominator.

Example:

$$
\int \frac{8 x+14}{2 x^{2}+7 x-9} d x
$$

In this case, we need to tweak the numerator so that it is the derivative of the denominator. We do this by playing around with factors.

$$
2 \int \frac{4 x+7}{2 x^{2}+7 x-9} d x
$$

From this, we get:

$$
2 \ln \left|2 x^{2}+7 x-9\right|+C
$$

Constant over Linear

Integrating a constant over a linear is easy to do!

$$
\int \frac{5}{2 x-3} d x
$$

Constant over Linear

Integrating a constant over a linear is easy to do!

$$
\int \frac{5}{2 x-3} d x
$$

Just scale the top so that it is the derivative of the bottom:

$$
\frac{5}{2} \int \frac{2}{2 x-3} d x
$$

Constant over Linear

Integrating a constant over a linear is easy to do!

$$
\int \frac{5}{2 x-3} d x
$$

Just scale the top so that it is the derivative of the bottom:

$$
\frac{5}{2} \int \frac{2}{2 x-3} d x
$$

Now integrating is easy:

$$
\frac{5}{2} \ln |2 x-3|+C
$$

Quotients of Linears

How do we integrate a linear over a linear?

Example:

$$
\int \frac{8 x+14}{3 x-9} d x
$$

Quotients of Linears

How do we integrate a linear over a linear?

Example:

$$
\int \frac{8 x+14}{3 x-9} d x
$$

If we rewrite the top so that it contains a $(3 x-9)$, we can cancel the linear part out.

Quotients of Linears

How do we integrate a linear over a linear?

Example:

$$
\int \frac{8 x+14}{3 x-9} d x
$$

If we rewrite the top so that it contains a $(3 x-9)$, we can cancel the linear part out.
Start by manipulating the coefficient of x :

$$
\frac{8}{3}(3 x-9)
$$

Quotients of Linears

How do we integrate a linear over a linear?

Example:

$$
\int \frac{8 x+14}{3 x-9} d x
$$

If we rewrite the top so that it contains a $(3 x-9)$, we can cancel the linear part out.
Start by manipulating the coefficient of x :

$$
\frac{8}{3}(3 x-9)
$$

If we expand this we get

$$
8 x-24
$$

Quotients of Linears

How do we integrate a linear over a linear?

Example:

$$
\int \frac{8 x+14}{3 x-9} d x
$$

If we rewrite the top so that it contains a $(3 x-9)$, we can cancel the linear part out.
Start by manipulating the coefficient of x :

$$
\frac{8}{3}(3 x-9)
$$

If we expand this we get

$$
8 x-24
$$

which isn't exactly equal to $8 x+14$. So we adjust the constant:

$$
\frac{8}{3}(3 x-9)+38
$$

Quotients of Linears

So, we can integrate

$$
\int \frac{8 x+14}{3 x-9} d x
$$

Quotients of Linears

So, we can integrate

$$
\int \frac{8 x+14}{3 x-9} d x
$$

by writing it as

$$
\int \frac{\frac{8}{3}(3 x-9)+38}{3 x-9} d x
$$

Quotients of Linears

So, we can integrate

$$
\int \frac{8 x+14}{3 x-9} d x
$$

by writing it as

$$
\int \frac{\frac{8}{3}(3 x-9)+38}{3 x-9} d x
$$

and separating to get

$$
\int \frac{\frac{8}{3}(3 x-9)}{3 x-9}+\frac{38}{3 x-9} d x
$$

Quotients of Linears

So, we can integrate

$$
\int \frac{8 x+14}{3 x-9} d x
$$

by writing it as

$$
\int \frac{\frac{8}{3}(3 x-9)+38}{3 x-9} d x
$$

and separating to get

$$
\int \frac{\frac{8}{3}(3 x-9)}{3 x-9}+\frac{38}{3 x-9} d x
$$

which equals

$$
\int \frac{8}{3}+\frac{38}{3} \frac{3}{3 x-9} d x
$$

Quotients of Linears

We can now easily integrate

$$
\int \frac{8}{3}+\frac{38}{3} \frac{3}{3 x-9} d x
$$

Quotients of Linears

We can now easily integrate

$$
\begin{gathered}
\int \frac{8}{3}+\frac{38}{3} \frac{3}{3 x-9} d x \\
\text { to obtain: } \\
\frac{8}{3} x+\frac{38}{3} \ln |3 x-9|+C
\end{gathered}
$$

Quotients of Linears

We can now easily integrate

$$
\begin{gathered}
\int \frac{8}{3}+\frac{38}{3} \frac{3}{3 x-9} d x \\
\text { to obtain: } \\
\frac{8}{3} x+\frac{38}{3} \ln |3 x-9|+C
\end{gathered}
$$

This method of integration holds for all quotients of linears.

Quadratics on the Bottom

Integrating a linear over a quadratic is fairly easy.

$$
\int \frac{2 x+4}{2 x^{2}+3 x+5} d x
$$

Quadratics on the Bottom

Integrating a linear over a quadratic is fairly easy.

$$
\int \frac{2 x+4}{2 x^{2}+3 x+5} d x
$$

The derivative of a quadratic is a linear, so we just need to play with the top. We want to rewrite the top in terms of the derivative of the bottom, which is $4 x+3$.

Quadratics on the Bottom

Integrating a linear over a quadratic is fairly easy.

$$
\int \frac{2 x+4}{2 x^{2}+3 x+5} d x
$$

The derivative of a quadratic is a linear, so we just need to play with the top. We want to rewrite the top in terms of the derivative of the bottom, which is $4 x+3$.

Start by manipulating the coefficient of x :

$$
\frac{1}{2}(4 x+3)
$$

Quadratics on the Bottom

Integrating a linear over a quadratic is fairly easy.

$$
\int \frac{2 x+4}{2 x^{2}+3 x+5} d x
$$

The derivative of a quadratic is a linear, so we just need to play with the top. We want to rewrite the top in terms of the derivative of the bottom, which is $4 x+3$.

Start by manipulating the coefficient of x :

$$
\frac{1}{2}(4 x+3)
$$

If we expand this we get $2 x+\frac{3}{2}$ which is not quite the same as $2 x+4$.

Quadratics on the Bottom

Integrating a linear over a quadratic is fairly easy.

$$
\int \frac{2 x+4}{2 x^{2}+3 x+5} d x
$$

The derivative of a quadratic is a linear, so we just need to play with the top. We want to rewrite the top in terms of the derivative of the bottom, which is $4 x+3$.

Start by manipulating the coefficient of x :

$$
\frac{1}{2}(4 x+3)
$$

If we expand this we get $2 x+\frac{3}{2}$ which is not quite the same as $2 x+4$.
So we adjust the constant:

$$
2 x+4=\frac{1}{2}(4 x+3)+\frac{5}{2}
$$

Quadratics on the Bottom

So, rewriting the top gives us:

$$
\int \frac{\frac{1}{2}(4 x+3)+\frac{5}{2}}{2 x^{2}+3 x+5} d x
$$

Quadratics on the Bottom

So, rewriting the top gives us:

$$
\int \frac{\frac{1}{2}(4 x+3)+\frac{5}{2}}{2 x^{2}+3 x+5} d x
$$

Break this into two integrals to get:

$$
\frac{1}{2} \int \frac{4 x+3}{2 x^{2}+3 x+5} d x+\frac{5}{2} \int \frac{1}{2 x^{2}+3 x+5} d x
$$

Quadratics on the Bottom

So, rewriting the top gives us:

$$
\int \frac{\frac{1}{2}(4 x+3)+\frac{5}{2}}{2 x^{2}+3 x+5} d x
$$

Break this into two integrals to get:

$$
\frac{1}{2} \int \frac{4 x+3}{2 x^{2}+3 x+5} d x+\frac{5}{2} \int \frac{1}{2 x^{2}+3 x+5} d x
$$

The first integral is equal to:

$$
\frac{1}{2} \ln \left|2 x^{2}+3 x+5\right|+C
$$

The second integral is a constant over a quadratic, similiar to the arctan integral that we encountered earlier!

Quadratics on the Bottom

$$
\frac{5}{2} \int \frac{1}{2 x^{2}+3 x+5} d x
$$

Quadratics on the Bottom

$$
\frac{5}{2} \int \frac{1}{2 x^{2}+3 x+5} d x
$$

Factoring out 2 from the bottom gives

$$
\frac{5}{4} \int \frac{1}{x^{2}+\frac{3}{2} x+\frac{5}{2}} d x
$$

Quadratics on the Bottom

$$
\frac{5}{2} \int \frac{1}{2 x^{2}+3 x+5} d x
$$

Factoring out 2 from the bottom gives

$$
\frac{5}{4} \int \frac{1}{x^{2}+\frac{3}{2} x+\frac{5}{2}} d x
$$

Completing the square gives

$$
\frac{5}{4} \int \frac{1}{\left(x+\frac{3}{4}\right)^{2}+\frac{31}{16}} d x
$$

Quadratics on the Bottom

$$
\frac{5}{2} \int \frac{1}{2 x^{2}+3 x+5} d x
$$

Factoring out 2 from the bottom gives

$$
\frac{5}{4} \int \frac{1}{x^{2}+\frac{3}{2} x+\frac{5}{2}} d x
$$

Completing the square gives

$$
\frac{5}{4} \int \frac{1}{\left(x+\frac{3}{4}\right)^{2}+\frac{31}{16}} d x
$$

This can be integrated using the arctan integral we saw before.

Partial Fractions

We now know how to integrate:
$\frac{\text { constant }}{\text { linear }}, \quad \frac{\text { linear }}{\text { linear }}, \quad \frac{\text { constant }}{\text { quadratic }}, \quad \frac{\text { linear }}{\text { quadratic }}$

Partial Fractions

We now know how to integrate:

$$
\frac{\text { constant }}{\text { linear }}, \quad \frac{\text { linear }}{\text { linear }}, \quad \frac{\text { constant }}{\text { quadratic }}, \quad \frac{\text { linear }}{\text { quadratic }}
$$

It turns out that these are the only forms we need when solving integrals which are the quotient of polynomials of any order. Why?

Partial Fractions

We now know how to integrate:

$$
\frac{\text { constant }}{\text { linear }}, \quad \frac{\text { linear }}{\text { linear }}, \quad \frac{\text { constant }}{\text { quadratic }}, \quad \frac{\text { linear }}{\text { quadratic }}
$$

It turns out that these are the only forms we need when solving integrals which are the quotient of polynomials of any order. Why?

- For quotients where the top polynomial is of equal or higher order than the bottom, use polynomial division to convert them to a polynomial plus a remainder.

Partial Fractions

We now know how to integrate:

$$
\frac{\text { constant }}{\text { linear }}, \quad \frac{\text { linear }}{\text { linear }}, \quad \frac{\text { constant }}{\text { quadratic }}, \quad \frac{\text { linear }}{\text { quadratic }}
$$

It turns out that these are the only forms we need when solving integrals which are the quotient of polynomials of any order. Why?

- For quotients where the top polynomial is of equal or higher order than the bottom, use polynomial division to convert them to a polynomial plus a remainder.
- Any polynomial with real coefficients can be factored into a product of linear and quadratic factors with real coefficients. (This is a consequence of the theorem that such polynomials are the product of linear factors with complex coefficients.)

Partial Fractions

We now know how to integrate:

$$
\frac{\text { constant }}{\text { linear }}, \quad \frac{\text { linear }}{\text { linear }}, \quad \frac{\text { constant }}{\text { quadratic }}, \quad \frac{\text { linear }}{\text { quadratic }}
$$

It turns out that these are the only forms we need when solving integrals which are the quotient of polynomials of any order. Why?

- For quotients where the top polynomial is of equal or higher order than the bottom, use polynomial division to convert them to a polynomial plus a remainder.
- Any polynomial with real coefficients can be factored into a product of linear and quadratic factors with real coefficients. (This is a consequence of the theorem that such polynomials are the product of linear factors with complex coefficients.)
- A theorem from advanced algebra.

Partial Fractions

We will see how this is done with factored polynomials.

Partial Fractions

We will see how this is done with factored polynomials.

Suppose we are asked to use partial fractions on the following rational expression:

$$
\frac{2 x+5}{x^{2}+3 x+2}
$$

Partial Fractions

We will see how this is done with factored polynomials.

Suppose we are asked to use partial fractions on the following rational expression:

$$
\frac{2 x+5}{x^{2}+3 x+2}
$$

When we use partial fractions, we should make sure that all quadratics are factorised (if possible).

Partial Fractions

We will see how this is done with factored polynomials.

Suppose we are asked to use partial fractions on the following rational expression:

$$
\frac{2 x+5}{x^{2}+3 x+2}
$$

When we use partial fractions, we should make sure that all quadratics are factorised (if possible).

$$
\frac{2 x+5}{(x+1)(x+2)}
$$

Partial Fractions

We will see how this is done with factored polynomials.

Suppose we are asked to use partial fractions on the following rational expression:

$$
\frac{2 x+5}{x^{2}+3 x+2}
$$

When we use partial fractions, we should make sure that all quadratics are factorised (if possible).

$$
\frac{2 x+5}{(x+1)(x+2)}
$$

There is a theorem which says that both linear terms on the bottom can be used to form separate fractions with a constant on top (ie. "partial fractions"):

$$
\frac{2 x+5}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}
$$

Partial Fractions

$$
\frac{2 x+5}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}
$$

Partial Fractions

$$
\frac{2 x+5}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}
$$

Multiply through by the denominator on the LHS to get:

$$
2 x+5=A(x+2)+B(x+1)
$$

Partial Fractions

$$
\frac{2 x+5}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}
$$

Multiply through by the denominator on the LHS to get:

$$
2 x+5=A(x+2)+B(x+1)
$$

Now we substitute in convenient x values:

$$
x=-2: \quad 2(-2)+5=A(-2+2)+B(-2+1)
$$

Partial Fractions

$$
\frac{2 x+5}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}
$$

Multiply through by the denominator on the LHS to get:

$$
2 x+5=A(x+2)+B(x+1)
$$

Now we substitute in convenient x values:

$$
\begin{array}{ll}
x=-2: \quad & 2(-2)+5=A(-2+2)+B(-2+1) \\
& \text { which gives } B=-1, \text { and }
\end{array}
$$

Partial Fractions

$$
\frac{2 x+5}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}
$$

Multiply through by the denominator on the LHS to get:

$$
2 x+5=A(x+2)+B(x+1)
$$

Now we substitute in convenient x values:

$$
\begin{array}{ll}
x=-2: & 2(-2)+5=A(-2+2)+B(-2+1) \\
& \text { which gives } B=-1, \text { and } \\
x=-1: & 2(-1)+5=A(-1+2)+B(-1+1)
\end{array}
$$

Partial Fractions

$$
\frac{2 x+5}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}
$$

Multiply through by the denominator on the LHS to get:

$$
2 x+5=A(x+2)+B(x+1)
$$

Now we substitute in convenient x values:

$$
\begin{array}{cl}
x=-2: & 2(-2)+5=A(-2+2)+B(-2+1) \\
& \text { which gives } B=-1, \text { and } \\
x=-1: & 2(-1)+5=A(-1+2)+B(-1+1) \\
& \text { which gives } A=3
\end{array}
$$

Partial Fractions

Therefore, the use of partial fractions has allowed us to see the equivalence:

$$
\frac{2 x+5}{(x+1)(x+2)}=\frac{3}{x+1}+\frac{-1}{x+2}
$$

Partial Fractions

Therefore, the use of partial fractions has allowed us to see the equivalence:

$$
\frac{2 x+5}{(x+1)(x+2)}=\frac{3}{x+1}+\frac{-1}{x+2}
$$

Integrating the expression on the left is easy now; we simply integrate the two terms on the right which we know how to do!

Partial Fractions

So, each unique single linear factor gives rise to a new term.
What about if we are required to split up:

$$
\frac{2 x+5}{(x+1)^{3}(x+2)}
$$

Partial Fractions

So, each unique single linear factor gives rise to a new term.
What about if we are required to split up:

$$
\frac{2 x+5}{(x+1)^{3}(x+2)}
$$

We deal with repeated linear factors by building up as follows:

$$
\frac{2 x+5}{(x+1)^{3}(x+2)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}}+\frac{D}{(x+2)}
$$

Partial Fractions

So, each unique single linear factor gives rise to a new term.
What about if we are required to split up:

$$
\frac{2 x+5}{(x+1)^{3}(x+2)}
$$

We deal with repeated linear factors by building up as follows:

$$
\frac{2 x+5}{(x+1)^{3}(x+2)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}}+\frac{D}{(x+2)}
$$

Once again, multiply through by the denominator of the LHS and substitute in convenient x values and solve for A, B, C, D.

Partial Fractions: Irreducible Quadratics

So linear factors are easy!

Partial Fractions: Irreducible Quadratics

So linear factors are easy!

Often, a quadratic will not reduce into linear factors. Consider:

$$
\frac{2 x^{2}+6}{(x+2)(x-1)\left(x^{2}+1\right)}
$$

Partial Fractions: Irreducible Quadratics

So linear factors are easy!

Often, a quadratic will not reduce into linear factors. Consider:

$$
\frac{2 x^{2}+6}{(x+2)(x-1)\left(x^{2}+1\right)}
$$

The $x^{2}+1$ term is irreducible (imaginary roots) and thus will not reduce into linears. We deal with this as follows:

$$
\frac{2 x^{2}+6}{(x+2)(x-1)\left(x^{2}+1\right)}=\frac{A}{x+2}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+1}
$$

Partial Fractions: Irreducible Quadratics

So linear factors are easy!

Often, a quadratic will not reduce into linear factors. Consider:

$$
\frac{2 x^{2}+6}{(x+2)(x-1)\left(x^{2}+1\right)}
$$

The $x^{2}+1$ term is irreducible (imaginary roots) and thus will not reduce into linears. We deal with this as follows:

$$
\frac{2 x^{2}+6}{(x+2)(x-1)\left(x^{2}+1\right)}=\frac{A}{x+2}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+1}
$$

Once again, convenient values of x will do the trick.

Partial Fractions: Irreducible Quadratics

What about (dare I say it) repeated quadratics?!

$$
\frac{2 x^{2}+6}{(x+2)(x-1)^{2}\left(x^{2}+1\right)^{3}}
$$

Partial Fractions: Irreducible Quadratics

What about (dare I say it) repeated quadratics?!

$$
\frac{2 x^{2}+6}{(x+2)(x-1)^{2}\left(x^{2}+1\right)^{3}}
$$

Same as repeated linears - we simply build up to the relevant power!

$$
\frac{2 x^{2}+6}{(x+2)(x-1)^{2}\left(x^{2}+1\right)^{3}}=\frac{A}{x+2}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}+\frac{D x+E}{x^{2}+1}+\frac{F x+G}{\left(x^{2}+1\right)^{2}}+\frac{H x+I}{\left(x^{2}+1\right)^{3}}
$$

Partial Fractions: Irreducible Quadratics

What about (dare I say it) repeated quadratics?!

$$
\frac{2 x^{2}+6}{(x+2)(x-1)^{2}\left(x^{2}+1\right)^{3}}
$$

Same as repeated linears - we simply build up to the relevant power!
$\frac{2 x^{2}+6}{(x+2)(x-1)^{2}\left(x^{2}+1\right)^{3}}=\frac{A}{x+2}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}+\frac{D x+E}{x^{2}+1}+\frac{F x+G}{\left(x^{2}+1\right)^{2}}+\frac{H x+I}{\left(x^{2}+1\right)^{3}}$

Once again, multiplying through by denominator of LHS and substituting in convenient values of x will do the trick.

Integration by Partial Fractions: Exercises

Evaluate the following integrals. (There are worked solutions on the following pages).

$$
\text { Exercise 1: } \int \frac{2 x+1}{x^{2}-11 x+30} d x
$$

Exercise 2: $\int \frac{3+2 x}{(4 x+2)(2 x+3)} d x$

Exercise 3: $\int \frac{x^{4}+2 x^{3}+18 x^{2}+30 x+13}{(x+2)^{2}(x-3)} d x$

Solution to Exercise 1

This one is linear over quadratic so we could do it by manipulating the top line to be the derivative of the bottom line. However, the bottom line factorizes so partial fractions turns out to be quicker.

$$
\frac{2 x+1}{x^{2}-11 x+30}=\frac{2 x+1}{(x-5)(x-6)}
$$

Solution to Exercise 1

This one is linear over quadratic so we could do it by manipulating the top line to be the derivative of the bottom line. However, the bottom line factorizes so partial fractions turns out to be quicker.

$$
\begin{aligned}
\frac{2 x+1}{x^{2}-11 x+30} & =\frac{2 x+1}{(x-5)(x-6)} \\
& =\frac{A}{x-5}+\frac{B}{x-6}
\end{aligned}
$$

Solution to Exercise 1

This one is linear over quadratic so we could do it by manipulating the top line to be the derivative of the bottom line. However, the bottom line factorizes so partial fractions turns out to be quicker.

$$
\begin{aligned}
\frac{2 x+1}{x^{2}-11 x+30} & =\frac{2 x+1}{(x-5)(x-6)} \\
& =\frac{A}{x-5}+\frac{B}{x-6}
\end{aligned}
$$

Multiply through by the denominator to get:

$$
2 x+1=A(x-6)+B(x-5)
$$

Solution to Exercise 1

This one is linear over quadratic so we could do it by manipulating the top line to be the derivative of the bottom line. However, the bottom line factorizes so partial fractions turns out to be quicker.

$$
\begin{aligned}
\frac{2 x+1}{x^{2}-11 x+30} & =\frac{2 x+1}{(x-5)(x-6)} \\
& =\frac{A}{x-5}+\frac{B}{x-6}
\end{aligned}
$$

Multiply through by the denominator to get:

$$
2 x+1=A(x-6)+B(x-5)
$$

Now we substitute in convenient x values:

$$
x=5: \quad 2(5)+1=A(5-6)+B(5-5)
$$

Solution to Exercise 1

This one is linear over quadratic so we could do it by manipulating the top line to be the derivative of the bottom line. However, the bottom line factorizes so partial fractions turns out to be quicker.

$$
\begin{aligned}
\frac{2 x+1}{x^{2}-11 x+30} & =\frac{2 x+1}{(x-5)(x-6)} \\
& =\frac{A}{x-5}+\frac{B}{x-6}
\end{aligned}
$$

Multiply through by the denominator to get:

$$
2 x+1=A(x-6)+B(x-5)
$$

Now we substitute in convenient x values:

$$
\begin{gathered}
x=5: \quad 2(5)+1=A(5-6)+B(5-5) \\
\quad \text { which gives } A=-11, \text { and }
\end{gathered}
$$

Solution to Exercise 1

This one is linear over quadratic so we could do it by manipulating the top line to be the derivative of the bottom line. However, the bottom line factorizes so partial fractions turns out to be quicker.

$$
\begin{aligned}
\frac{2 x+1}{x^{2}-11 x+30} & =\frac{2 x+1}{(x-5)(x-6)} \\
& =\frac{A}{x-5}+\frac{B}{x-6}
\end{aligned}
$$

Multiply through by the denominator to get:

$$
2 x+1=A(x-6)+B(x-5)
$$

Now we substitute in convenient x values:

$$
\begin{array}{ll}
x=5: & 2(5)+1=A(5-6)+B(5-5) \\
& \text { which gives } A=-11, \text { and } \\
x=6: & 2(6)+1=-11(6-6)+B(6-5)
\end{array}
$$

Solution to Exercise 1

This one is linear over quadratic so we could do it by manipulating the top line to be the derivative of the bottom line. However, the bottom line factorizes so partial fractions turns out to be quicker.

$$
\begin{aligned}
\frac{2 x+1}{x^{2}-11 x+30} & =\frac{2 x+1}{(x-5)(x-6)} \\
& =\frac{A}{x-5}+\frac{B}{x-6}
\end{aligned}
$$

Multiply through by the denominator to get:

$$
2 x+1=A(x-6)+B(x-5)
$$

Now we substitute in convenient x values:

$$
\begin{array}{cc}
x=5: & 2(5)+1=A(5-6)+B(5-5) \\
& \text { which gives } A=-11, \text { and } \\
x=6: & 2(6)+1=-11(6-6)+B(6-5) \\
& \text { which gives } B=13 .
\end{array}
$$

Solution to Exercise 1

Now $\int \frac{2 x+1}{(x-5)(x-6)} d x=-11 \int \frac{1}{x-5} d x+13 \int \frac{1}{x-6} d x$

Solution to Exercise 1

$$
\text { Now } \begin{aligned}
\int \frac{2 x+1}{(x-5)(x-6)} d x & =-11 \int \frac{1}{x-5} d x+13 \int \frac{1}{x-6} d x \\
& =-11 \ln |x-5|+13 \ln |x-6|+C
\end{aligned}
$$

Solution to Exercise 2

$$
\frac{3+2 x}{(4 x+2)(2 x+3)}=\frac{A}{4 x+2}+\frac{B}{2 x+3}
$$

Solution to Exercise 2

$$
\frac{3+2 x}{(4 x+2)(2 x+3)}=\frac{A}{4 x+2}+\frac{B}{2 x+3}
$$

Multiply through by the denominator to get:

$$
3+2 x=A(2 x+3)+B(4 x+2)
$$

Solution to Exercise 2

$$
\frac{3+2 x}{(4 x+2)(2 x+3)}=\frac{A}{4 x+2}+\frac{B}{2 x+3}
$$

Multiply through by the denominator to get:

$$
3+2 x=A(2 x+3)+B(4 x+2)
$$

Now we substitute in convenient x values:

$$
x=-\frac{3}{2}: \quad 3+2\left(-\frac{3}{2}\right)=A\left(2\left(-\frac{3}{2}\right)+3\right)+B\left(4\left(-\frac{3}{2}\right)+2\right)
$$

Solution to Exercise 2

$$
\frac{3+2 x}{(4 x+2)(2 x+3)}=\frac{A}{4 x+2}+\frac{B}{2 x+3}
$$

Multiply through by the denominator to get:

$$
3+2 x=A(2 x+3)+B(4 x+2)
$$

Now we substitute in convenient x values:

$$
\begin{gathered}
x=-\frac{3}{2}: \quad 3+2\left(-\frac{3}{2}\right)=A\left(2\left(-\frac{3}{2}\right)+3\right)+B\left(4\left(-\frac{3}{2}\right)+2\right) \\
\text { which gives } B=0, \text { and }
\end{gathered}
$$

Solution to Exercise 2

$$
\frac{3+2 x}{(4 x+2)(2 x+3)}=\frac{A}{4 x+2}+\frac{B}{2 x+3}
$$

Multiply through by the denominator to get:

$$
3+2 x=A(2 x+3)+B(4 x+2)
$$

Now we substitute in convenient x values:

$$
\begin{gathered}
x=-\frac{3}{2}: \quad 3+2\left(-\frac{3}{2}\right)=A\left(2\left(-\frac{3}{2}\right)+3\right)+B\left(4\left(-\frac{3}{2}\right)+2\right) \\
\text { which gives } B=0, \text { and } \\
x=0: \quad 3+2(0)=A(2(0)+3)
\end{gathered}
$$

Solution to Exercise 2

$$
\frac{3+2 x}{(4 x+2)(2 x+3)}=\frac{A}{4 x+2}+\frac{B}{2 x+3}
$$

Multiply through by the denominator to get:

$$
3+2 x=A(2 x+3)+B(4 x+2)
$$

Now we substitute in convenient x values:

$$
\begin{gathered}
x=-\frac{3}{2}: \quad 3+2\left(-\frac{3}{2}\right)=A\left(2\left(-\frac{3}{2}\right)+3\right)+B\left(4\left(-\frac{3}{2}\right)+2\right) \\
\text { which gives } B=0, \text { and } \\
x=0: \quad 3+2(0)=A(2(0)+3) \\
\text { which gives } A=1 .
\end{gathered}
$$

Solution to Exercise 2

This is an odd result! It seems that

$$
\int \frac{3+2 x}{(4 x+2)(2 x+3)} d x=\int \frac{1}{4 x+2} d x
$$

In other words, we have just cancelled out the common factor of $(2 x+3)$!

Solution to Exercise 2

This is an odd result! It seems that

$$
\int \frac{3+2 x}{(4 x+2)(2 x+3)} d x=\int \frac{1}{4 x+2} d x
$$

In other words, we have just cancelled out the common factor of $(2 x+3)$!
If we had spotted that at the beginning, we would not have had to resort to partial fractions. (However, it's nice to know that this method arrives at this more obvious answer.)

Solution to Exercise 2

This is an odd result! It seems that

$$
\int \frac{3+2 x}{(4 x+2)(2 x+3)} d x=\int \frac{1}{4 x+2} d x
$$

In other words, we have just cancelled out the common factor of $(2 x+3)$!

If we had spotted that at the beginning, we would not have had to resort to partial fractions. (However, it's nice to know that this method arrives at this more obvious answer.)

So the solution is

$$
\int \frac{1}{4 x+2} d x=\frac{1}{4} \ln |4 x+2|+C
$$

Solution to Exercise 3

The numerator is of higher degree (4) than the denominator (3). It also has no easy-to-find linear factors, so start with polynomial division:

Solution to Exercise 3

The numerator is of higher degree (4) than the denominator (3). It also has no easy-to-find linear factors, so start with polynomial division:

$$
(x+2)^{2}(x-3)=x^{3}+x^{2}-8 x-12
$$

Solution to Exercise 3

The numerator is of higher degree (4) than the denominator (3). It also has no easy-to-find linear factors, so start with polynomial division:

$$
(x+2)^{2}(x-3)=x^{3}+x^{2}-8 x-12
$$

$$
x ^ { 3 } + x ^ { 2 } - 8 x - 1 2 \longdiv { x ^ { 4 } + 2 x ^ { 3 } + 1 8 x ^ { 2 } + 3 0 x + 1 3 }
$$

Solution to Exercise 3

The numerator is of higher degree (4) than the denominator (3). It also has no easy-to-find linear factors, so start with polynomial division:

$$
\begin{gathered}
(x+2)^{2}(x-3)=x^{3}+x^{2}-8 x-12 \\
x \\
x ^ { 3 } + x ^ { 2 } - 8 x - 1 2 \longdiv { x ^ { 4 } + 2 x ^ { 3 } + 1 8 x ^ { 2 } + 3 0 x + 1 3 }
\end{gathered}
$$

Solution to Exercise 3

The numerator is of higher degree (4) than the denominator (3). It also has no easy-to-find linear factors, so start with polynomial division:

$$
\begin{gathered}
(x+2)^{2}(x-3)=x^{3}+x^{2}-8 x-12 \\
x \\
x^{3}+x^{2}-8 x-12 \\
-\quad \begin{array}{l}
x^{4}+2 x^{3}+18 x^{2}+30 x+13 \\
-
\end{array} \\
x^{4}+x^{3}-8 x^{2}-12 x
\end{gathered}
$$

Solution to Exercise 3

The numerator is of higher degree (4) than the denominator (3). It also has no easy-to-find linear factors, so start with polynomial division:

$$
\begin{gathered}
(x+2)^{2}(x-3)=x^{3}+x^{2}-8 x-12 \\
x^{3}+x^{2}-8 x-12 \\
-\frac{x}{x^{4}+2 x^{3}+18 x^{2}+30 x+13} \\
\frac{x^{4}+x^{3}-8 x^{2}-12 x}{x^{3}+26 x^{2}+42 x+13}
\end{gathered}
$$

Solution to Exercise 3

The numerator is of higher degree (4) than the denominator (3). It also has no easy-to-find linear factors, so start with polynomial division:

$$
\begin{gathered}
(x+2)^{2}(x-3)=x^{3}+x^{2}-8 x-12 \\
x^{3}+x^{2}-8 x-12 \\
-\frac{x+1}{x^{4}+2 x^{3}+18 x^{2}+30 x+13} \\
\frac{x^{4}+x^{3}-8 x^{2}-12 x}{x^{3}+26 x^{2}+42 x+13}
\end{gathered}
$$

Solution to Exercise 3

The numerator is of higher degree (4) than the denominator (3). It also has no easy-to-find linear factors, so start with polynomial division:

$$
\begin{array}{r}
(x+2)^{2}(x-3)=x^{3}+x^{2}-8 x-12 \\
x^{3}+x^{2}-8 x-12 \begin{array}{|c}
x^{4}+2 x^{3}+18 x^{2}+30 x+13 \\
- \\
-\quad \begin{array}{rr}
x^{4}+x^{3}-8 x^{2}-12 x
\end{array} \\
x^{3}+26 x^{2}+42 x+13 \\
x^{3}+x^{2}-8 x-12
\end{array}
\end{array}
$$

Solution to Exercise 3

The numerator is of higher degree (4) than the denominator (3). It also has no easy-to-find linear factors, so start with polynomial division:

$$
\begin{array}{r}
(x+2)^{2}(x-3)=x^{3}+x^{2}-8 x-12 \\
x^{3}+x^{2}-8 x-12 \begin{array}{|c}
x^{4}+2 x^{3}+18 x^{2}+30 x+13 \\
- \\
-\quad \frac{x^{4}+x^{3}-8 x^{2}-12 x}{x^{3}+26 x^{2}+42 x+13} \\
-
\end{array} \begin{array}{r}
x^{3}+x^{2}-8 x-12 \\
25 x^{2}+50 x+25
\end{array}
\end{array}
$$

Solution to Exercise 3

The numerator is of higher degree (4) than the denominator (3). It also has no easy-to-find linear factors, so start with polynomial division:

$$
\begin{array}{r}
(x+2)^{2}(x-3)=x^{3}+x^{2}-8 x-12 \\
x^{3}+x^{2}-8 x-12 \begin{array}{|c}
x^{4}+2 x^{3}+18 x^{2}+30 x+13 \\
- \\
-\quad \frac{x^{4}+x^{3}-8 x^{2}-12 x}{x^{3}+26 x^{2}+42 x+13} \\
-
\end{array} \begin{array}{r}
x^{3}+x^{2}-8 x-12 \\
25 x^{2}+50 x+25
\end{array}
\end{array}
$$

Hence $\int \frac{x^{4}+2 x^{3}+18 x^{2}+30 x+13}{(x+2)^{2}(x-3)} d x=\int x+1 d x+\int \frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)} d x$

Solution to Exercise 3

$$
\frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)}=\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-3}
$$

Solution to Exercise 3

$$
\frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)}=\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-3}
$$

Multiply through by the denominator to get:

$$
25 x^{2}+50 x+25=A(x+2)(x-3)+B(x-3)+C(x+2)^{2}
$$

Solution to Exercise 3

$$
\frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)}=\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-3}
$$

Multiply through by the denominator to get:

$$
25 x^{2}+50 x+25=A(x+2)(x-3)+B(x-3)+C(x+2)^{2}
$$

Now we substitute in convenient x values:

$$
x=3: \quad 25(3)^{2}+50(3)+25=A(3+2)(3-3)+B(3-3)+C(3+2)^{2}
$$

Solution to Exercise 3

$$
\frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)}=\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-3}
$$

Multiply through by the denominator to get:

$$
25 x^{2}+50 x+25=A(x+2)(x-3)+B(x-3)+C(x+2)^{2}
$$

Now we substitute in convenient x values:

$$
\begin{gathered}
x=3: \quad 25(3)^{2}+50(3)+25=A(3+2)(3-3)+B(3-3)+C(3+2)^{2} \\
\text { which gives } C=16,
\end{gathered}
$$

Solution to Exercise 3

$$
\frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)}=\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-3}
$$

Multiply through by the denominator to get:

$$
25 x^{2}+50 x+25=A(x+2)(x-3)+B(x-3)+C(x+2)^{2}
$$

Now we substitute in convenient x values:

$$
x=3: \quad 25(3)^{2}+50(3)+25=A(3+2)(3-3)+B(3-3)+C(3+2)^{2}
$$

which gives $C=16$,

$$
x=-2: \quad 25(-2)^{2}+50(-2)+25=A(-2+2)(-2-3)+B(-2-3)+16(-2+2)^{2}
$$

Solution to Exercise 3

$$
\frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)}=\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-3}
$$

Multiply through by the denominator to get:

$$
25 x^{2}+50 x+25=A(x+2)(x-3)+B(x-3)+C(x+2)^{2}
$$

Now we substitute in convenient x values:

$$
x=3: \quad 25(3)^{2}+50(3)+25=A(3+2)(3-3)+B(3-3)+C(3+2)^{2}
$$

which gives $C=16$,
$x=-2: \quad 25(-2)^{2}+50(-2)+25=A(-2+2)(-2-3)+B(-2-3)+16(-2+2)^{2}$
which gives $B=-5$, and

Solution to Exercise 3

$$
\frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)}=\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-3}
$$

Multiply through by the denominator to get:

$$
25 x^{2}+50 x+25=A(x+2)(x-3)+B(x-3)+C(x+2)^{2}
$$

Now we substitute in convenient x values:

$$
x=3: \quad 25(3)^{2}+50(3)+25=A(3+2)(3-3)+B(3-3)+C(3+2)^{2}
$$

which gives $C=16$,

$$
x=-2: \quad 25(-2)^{2}+50(-2)+25=A(-2+2)(-2-3)+B(-2-3)+16(-2+2)^{2}
$$

which gives $B=-5$, and

$$
x=0: \quad 25(0)^{2}+50(0)+25=A(0+2)(0-3)-5(0-3)+16(0+2)^{2}
$$

Solution to Exercise 3

$$
\frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)}=\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-3}
$$

Multiply through by the denominator to get:

$$
25 x^{2}+50 x+25=A(x+2)(x-3)+B(x-3)+C(x+2)^{2}
$$

Now we substitute in convenient x values:

$$
x=3: \quad 25(3)^{2}+50(3)+25=A(3+2)(3-3)+B(3-3)+C(3+2)^{2}
$$

which gives $C=16$,

$$
x=-2: \quad 25(-2)^{2}+50(-2)+25=A(-2+2)(-2-3)+B(-2-3)+16(-2+2)^{2}
$$

which gives $B=-5$, and

$$
x=0: \quad 25(0)^{2}+50(0)+25=A(0+2)(0-3)-5(0-3)+16(0+2)^{2}
$$

which gives $A=9$.

Solution to Exercise 3

$$
\begin{array}{r}
\text { So, finally, } \\
\int \frac{x^{4}+2 x^{3}+18 x^{2}+30 x+13}{(x+2)^{2}(x-3)} \\
=\int x+1 d x+\int \frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)} d x
\end{array}
$$

Solution to Exercise 3

So, finally,

$$
\begin{aligned}
& \int \frac{x^{4}+2 x^{3}+18 x^{2}+30 x+13}{(x+2)^{2}(x-3)} \\
= & \int x+1 d x+\int \frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)} d x \\
= & \int x+1 d x+9 \int \frac{1}{x+2} d x-5 \int \frac{1}{(x+2)^{2}} d x+16 \int \frac{1}{x-3} d x
\end{aligned}
$$

Solution to Exercise 3

So, finally,

$$
\begin{aligned}
& \int \frac{x^{4}+2 x^{3}+18 x^{2}+30 x+13}{(x+2)^{2}(x-3)} \\
= & \int x+1 d x+\int \frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)} d x \\
= & \int x+1 d x+9 \int \frac{1}{x+2} d x-5 \int \frac{1}{(x+2)^{2}} d x+16 \int \frac{1}{x-3} d x \\
= & \frac{1}{2} x^{2}+x+9 \ln |x+2|-5 x-\frac{1}{(x+2)}+16 \ln |x-3|+C
\end{aligned}
$$

Solution to Exercise 3

So, finally,

$$
\begin{aligned}
& \int \frac{x^{4}+2 x^{3}+18 x^{2}+30 x+13}{(x+2)^{2}(x-3)} \\
= & \int x+1 d x+\int \frac{25 x^{2}+50 x+25}{(x+2)^{2}(x-3)} d x \\
= & \int x+1 d x+9 \int \frac{1}{x+2} d x-5 \int \frac{1}{(x+2)^{2}} d x+16 \int \frac{1}{x-3} d x \\
= & \frac{1}{2} x^{2}+x+9 \ln |x+2|-5 x-\frac{1}{(x+2)}+16 \ln |x-3|+C \\
= & \frac{1}{2} x^{2}+x+9 \ln |x+2|+\frac{5}{x+2}+16 \ln |x-3|+C
\end{aligned}
$$

Using STUDYSmarter Resources

This resource was developed for UWA students by the STUDYSmarter team for the numeracy program. When using our resources, please retain them in their original form with both the STUDYSmarter heading and the UWA crest.

The University of WESTERN AUSTRALIA
$\Leftrightarrow($ (1) Θ

