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Introduction to The Central Limit Theorem

There are a number of important theorems that govern the sampling distribution of Y .   Principal
among them stands the Central Limit Theorem.  A typical presentation of the theorem is given on
page 249 in Statistics, The Exploration and Analysis of Data, 3rd, by Devore and Peck (1997),
who state it this way:

Let Y  denote the mean of the observations in a random sample of size n from a
population having a mean µ  and standard deviation σ .  Denote the mean of the
Y  distribution by Yµ  and the standard deviation of the  Y  distribution by Yσ .
Then the following rules hold:

Rule 1.  Yµ µ=

Rule 2.  Y n
σσ =   This rule is approximately correct as long as no more than 

5% of the population is included in the sample.

Rule 3.   When the population distribution is normal, the sampling distribution of 
    Y  is also normal for any sample size n.

Rule 4.  (Central Limit Theorem)
   When n is sufficiently large, the sampling distribution of Y  is well 
    approximated by a normal curve, even when the population distribution 
    is not itself normal.

The key point about the Central Limit Theorem is that it is a theorem about shape.   The
derivation for the mean and standard deviation of the sampling distribution of sample means
(Rules 1 and 2) does not require an assumption of normality.  Let us suppose that Y Y Yn1 2, ,...,  are
independent and identically distributed with mean = µ  and finite variance σ2 .  We now prove
these two theorems about the mean and variance of the sample mean.

Theorem 1a: E Yc h= µ
Proof:
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Note that independence of the 'siY  is not needed for this result.

Theorem 1b: ( )
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Proof:
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Note that ( ) ( )i jE Y E Y=  is not required for this result.  In fact, independence is not necessary,

just that the Y's are uncorrelated.

Before proving the Central Limit Theorem, we need an essential theorem from probability theory.
This theorem will be stated but not proven.

Theorem 2:  Let nY  and Y be random variables with moment generating functions ( )nm t  and

( )m t , respectively.  If

( ) ( )lim nn
m t m t

→ ∞
=

for all real t, then the distribution function of nY  converges to the distribution function of Y as
n → ∞ .

The Central Limit Theorem

A more formal and mathematical statement of the Central Limit Theorem is stated in the
following way.

The Central Limit Theorem: Suppose that Y Y Yn1 2, ,...,  are independent and identically
distributed with mean µ  and finite variance σ2 .  Define the random variable Un  as follows:
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Then the distribution function of Un  converges to the standard normal distribution function as n
increases without bound.

Proof:
Define a random variable iZ  by

i
i

Y
Z

µ
σ
−= .

Notice that ( ) 0iE Z =  and ( ) 1iV Z = .  Thus, the moment generating function can be written as

( ) ( )2 3
31
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Because the random variables iY  are independent, so are the random variables iZ .  We know that
the moment-generating function of the sum of independent random variables is the product of
their individual moment-generating functions. Thus,

( ) ( )3
2

2 3
31

2 3!

nn

n Z i
t t tm t m E Z

n nn

   = = + + +       
L

We now take the limit of ( )nm t  as n → ∞ .   This can be facilitated by considering
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We now make a substitution into the expression on the right.  Recall that the Taylor series

expansion for  ( )
2 3 4

ln 1
2 3 4
x x x

x x+ = − + − + L .    If we let  ( )3
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Now, rewrite this last expression by substituting for x.  This gives the very messy equation

( )( ) ( ) ( ) ( )3 3 3
2 2 2

2 32 3 2 3 2 3
3 3 31 1ln

2 2 2 3 23! 3! 3!n i i i
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L L L L

If we multiply through by the initial n, all terms except the first have some positive power of n in
the denominator.  Consequently, as n → ∞ , all terms but the first go to zero, leaving

( )( )
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lim ln
2nn

t
m t
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=

and

( )( ) 2
2lim
t

nn
m t e

→ ∞
= .

The last is recognized as the moment-generating function for a standard normal random variable.
Since moment-generating functions are unique, and invoking the Theorem 2 above, we know that

nU  has a distribution that converges to the distribution function of the standard normal random
variable.

The essential implication here is that probability statements about Un  can be approximated by
probability statements about the standard normal random variable if n is large.

Sampling Distribution of Sums

We can recast the central limit theorem as a theorem about sums of random variables also. Let us
suppose that Y Y Yn1 2, ,...,  are independent and distributed with mean µ  and finite variance σ2 .
Let Y Y Y Yn

* ...= + + +1 2 .   Then…
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and thus Y *  must also be approximately normally distributed.
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Bernoulli Trials

In the case that Y Y Yn1 2, ,...,  are distributed as counts from Bernoulli trials with probability of
success p, E y pib g= , and V y p pib g b g= −1 , it follows that

( )*E Y np=  and ( ) ( )* 1V Y np p= −

and  
Y np
np p

* −
−1b g  is approximately distributed as N(0, 1) as n increases without bound.

Simulations

One way to "see" the Central Limit Theorem in action is through simulations.  We can select n
independent values from a given distribution, find the mean, and repeat the process several
thousand times.  Gathering all of the computed sample means, we can find the mean and standard
deviation of these sample means and present the distribution in a histogram.  A few examples are
shown below.  The population is ( )2 2χ  which has 2µ =  and 2 4σ = .  If we draw n values from
this distribution 25,000 times, compute the mean and standard deviation of these 25,000 draws,
and plot a histogram of the results, we have the following graphs and values.  We are expecting

the mean and standard deviation of the 25,000 draws to be 2x =  and 
2s
n

= , respectively.

 1, 1.995, 2.007n x s= = = 2, 2.017, 1.434n x s= = =

 4, 2.001, 1.005n x s= = = 9, 1.995, 0.664n x s= = =
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16, 1.993, 0.469n x s= = = 25, 2.000, 0.401n x s= = =

40, 2.001, 0.315n x s= = = 100, 2.001, 0.200n x s= = =

Another approach to visualizing the Central Limit Theorem is to compare the probability density
functions.  We expect that the distribution function for the chi-square distribution with υ  degrees
of freedom will approach the normal distribution function with mean υ  and variance 2υ , that is,

( ) ( )2 ,2Nχ υ υ υ≈  and υ  increases.  The graphs of these probability density functions are given
below.  In the first set of graphs, the chi-square probability density function is in bold and the
normal density function is dashed.

( ) ( )2 5 5,10Nχ ≈ ( ) ( )2 10 10,20Nχ ≈
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( ) ( )2 20 20,40Nχ ≈ ( ) ( )2 40 40,80Nχ ≈

Also, the probability density function for the Binomial distribution ( ),B n p  can be approximated

with the a normal density function with mean np and variance ( )1np p− , so

( ) ( )( ), , 1B n p N np np p≈ − .

In the second set of graphs, the binomial density function is in bold and the normal probability
density function is dashed.

 
( ) ( )( )( )( )5,0.4 2, 5 0.4 0.6B N≈ ( ) ( )( )( )( )10,0.4 4, 10 0.4 0.6B N≈



NCSSM Statistics Leadership Institute Notes The Theory of Inference

37

 
( ) ( )( )( )( )20,0.4 8, 20 0.4 0.6B N≈ ( ) ( )( )( )( )40,0.4 16, 40 0.4 0.6B N≈

Confidence intervals for µ .

A confidence interval for a target parameter, θ , is an interval, (L, U), with endpoints L and U
calculated from the sample.  Ideally the resulting interval will have two properties: it will contain
the population parameter a large proportion of the time, and it will be narrow.  These upper and
lower limits of the confidence interval are called upper and lower confidence limits.  The
probability that a confidence interval will contain θ  is called the confidence coefficient.

In the case of a confidence interval for the population mean, we may begin with the probability
distribution for the sample mean.  As we have shown above, the distribution of the sample mean is
approximately normal for large n.  That is,
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  is approximately normally distributed for large n.

That being the case, for a confidence coefficient of 1 − α the following is true approximately for
large n:

1YZ Z

n

p µ α
σ

 
 −− < < = − 

      

 To keep the notation simple we will construct a 95% confidence interval for the population
mean.   We know from our standard normal calculations that:
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With a little algebra, we have:

p YY Y− < − < =196 196 0 95. . .σ µ σc h
( )
( )
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Y Y

Y Y

p Y
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( )1.96 1.96 0.95Y Yp Y Yσ µ σ− < < + =

Since we typically do not know 2σ , we can't evaluate σ σ
Y n

= .  Instead,  we substitute our

estimate based on the sample to actually construct the interval.  And, because we are estimating
the population variance, we must use the t-distribution for the shape of the sampling distribution
of the sample mean.

p Y t
s
n

Y t
s
n

− < < +F
HG

I
KJ=* * .µ 0 95

A simple, correct probability statement about the confidence interval is:

the probability is 0.95 that the process of constructing the interval will result in an
interval containing the population mean.

We usually state that we are confident that the interval we constructed contains the population
mean.


