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| ntroduction to The Central Limit Theorem

There are a number of important theorems that govern the sampling distribution of Y .  Principal
among them stands the Central Limit Theorem. A typical presentation of the theorem is given on
page 249 in Satistics, The Exploration and Analysis of Data, 3rd, by Devore and Peck (1997),
who state it this way:

Let Y denotethe mean of the observationsin arandom sample of sizen from a
population having amean m and standard deviation s . Denote the mean of the

Y distribution by m, and the standard deviation of the Y distributionby s ;.
Then the following rules hold:

Rulel. m, =m
Rule2. s, = ST Thisruleis approximately correct aslong as no more than
n

5% of the population isincluded in the sample.

Rule 3. When the population distribution is normal, the sampling distribution of
Y isasonormal for any samplesizen.

Rule4. (Central Limit Theorem)
When n is sufficiently large, the sampling distribution of Y iswel
approximated by a normal curve, even when the population distribution
isnot itself normal.

The key point about the Central Limit Theorem is that it is a theorem about shape. The
derivation for the mean and standard deviation of the sampling distribution of sample means
(Rules 1 and 2) does not require an assumption of normality. Let us supposethat V,,Y,,...,Y, are

independent and identically distributed with mean = and finite variance s >. We now prove
these two theorems about the mean and variance of the sample mean.

Theorem 1a: E(Y)=m

Proof:
E(Y)= Eé%(Yl +Y2+Y3+...+Yn)§
=%E[Y1+Y2+Y3+...+Yn]

:%QE(YM E(Y,)+E(Y,)+...+ E(Y,)g

:%[m+ m+...+m|
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:%[nm]:

Note that independence of the Y, 's is not needed for thisresult.
— S 2
Theorem 1b: V(Y) =—
n
Proof:

v(Y)= vgl

i
_?éerllov[v +Y, +Y, Y]

(Y +Y,+Y,+.. +Y)

=20 M)+ (0)+v (%)L V()i

s, N
_8nggl +s,/+s, 4L +s 0
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Notethat E(Y,)=E(Y,) isnot required for thisresult. In fact, independence is not necessary,

just that the Y's are uncorrel ated.

Before proving the Central Limit Theorem, we need an essential theorem from probability theory.
This theorem will be stated but not proven.

Theorem 2: Let Y, and Y be random variables with moment generating functions m (t) and
m(t), respectively. If

limm, (t) =m(t)
for al redl t, then the distribution function of Y, converges to the distribution function of Y as
n® ¥ .

The Central Limit Theorem

A more formal and mathematical statement of the Central Limit Theorem is stated in the
following way.

The Central Limit Theorem: Supposethat V,,Y,,...,Y, areindependent and identically
distributed with mean r and finite variance s *. Define the random variable U, asfollows:
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Then the distribution function of U, converges to the standard normal distribution function asn
increases without bound.

Proof:
Define arandom variable Z, by

Y, -m
-
Noticethat E(Z,)=0 and V(Z,)=1. Thus, the moment generating function can be written as

Z =

t2 3

mz(t):1+z+§E(Zi3)+L
Also, we know that
s 0
1 Q.aY' nm.- g

& - mo ol T 1
U :\/ﬁ i o B Ny W A
" s g \/ﬁé s - &’

Because the random variables Y, are independent, so are the random variables Z,. We know that

the moment-generating function of the sum of independent random variables is the product of
their individual moment-generating functions. Thus,

é =t o @ t2
t)=am &0 =+ E

We now takethelimit of m, (t) as n® ¥ . Thiscan befacilitated by considering

2 t3

_n S 3\, 9
In(m(t))—nlngl+32n+3!n% E(Zi )+L =

We now make a subgtitution into the expression on the right. Recall that the Taylor series

2 3 4 2 3 L.
ol

expansion for In(1+x):x-X—+X—-X—+L . Ifwelet ngEt_+ t E(Zi3)+|- > then
2 3 4 $2n an® .

2 3 o
In(m(t)):nln(1+x)=n§<- X?+X3 L 2.
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Now, rewrite this last expression by substituting for x. This gives the very messy equation

o2t 6 1a? 6 1a? ¢ U
In(m, (t)) =n&—+ . E(Z°)+L - 292n+WE(ZS)+L ;+392n+WE(Zf)+L ;-L E

If we multiply through by theinitia n, all terms except the first have some positive power of nin
the denominator. Consequently, as n® ¥ , all terms but thefirst go to zero, leaving

imin(m (0) =
and 2
Iim(rm(t)):e%.

n® ¥
The last is recognized as the moment-generating function for a standard normal random variable.
Since moment-generating functions are unique, and invoking the Theorem 2 above, we know that
U, has adistribution that converges to the distribution function of the standard normal random

variable

The essential implication here is that probability statements about U, can be approximated by
probability statements about the standard normal random variableif nislarge.

Sampling Distribution of Sums

We can recast the central limit theorem as a theorem about sums of random variables also. Let us
supposethat V,,Y,,...,Y, areindependent and distributed with mean n and finite variance s ?

Let Y =Y, +Y,+.+Y,. Then...

V(Y )=V (Y, +Y, +..+Y
E(Y) = (Y + Y5, (V)=v(irrer.sy)

_ :V(nV)
= E(nY) L
= nE(Y) =v(Y)
=nm —nzgs;_—rs
eNg
Then,
Y-m _ Y-m N nyY - nm
-
8/f B
- nm
Jﬁs

and thus Y~ must also be approximately normally distributed.
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Bernoulli Trials

Inthecasethat VY,,Y,,...,Y, aredistributed as counts from Bernoulli trials with probability of
successp, E(y.)=p,and V(y,) = p(1- p), it follows that
E(Y*):np and V (Y*)=np(1- p)

and % is approximately distributed as N(O, 1) as n increases without bound.
npL- p
Simulations

One way to "see" the Central Limit Theorem in action is through smulations. We can sdlect n
independent values from a given distribution, find the mean, and repeat the process several
thousand times. Gathering al of the computed sample means, we can find the mean and standard
deviation of these sample means and present the distribution in a histogram. A few examples are

shown below. The population is ¢ ?(2) whichhas m=2 and s ? =4. If we draw n values from
this distribution 25,000 times, compute the mean and standard deviation of these 25,000 draws,
and plot a histogram of the results, we have the following graphs and values. We are expecting

the mean and standard deviation of the 25,000 drawstobe X =2 and s= i

Jn

, respectively.
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Anocther approach to visualizing the Central Limit Theorem is to compare the probability density
functions. We expect that the distribution function for the chi-square distribution with u degrees
of freedom will approach the normal distribution function with mean u and variance 2u, that is,

c?(u)» N(u,2u) and u increases. The graphs of these probability density functions are given
below. In the first set of graphs, the chi-square probability density function is in bold and the

normal density function is dashed.
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Also, the probability dengity function for the Binomial distribution B(n, p) can be approximated
with the anormal density function with mean np and variance np(1- p), so

B(n,p)» N (np,np(l- p))

In the second set of graphs, the binomial dengity function isin bold and the normal probability
dengity function is dashed.
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Confidenceintervalsfor m.

A confidenceinterval for atarget parameter, q , isan interva, (L, U), with endpoints L and U
calculated from the sample. Idedlly the resulting interval will have two properties: it will contain
the population parameter alarge proportion of the time, and it will be narrow. These upper and
lower limits of the confidence interval are called upper and lower confidence limits. The
probability that a confidence interval will contain q is called the confidence coefficient.

In the case of a confidence interval for the population mean, we may begin with the probability

distribution for the sample mean. As we have shown above, the distribution of the sample mean is
approximately normal for largen. Thatis,

YT

That being the case, for a confidence coefficient of 1- a the following is true approximately for
largen:

U,= is approximately normally distributed for large n.

To keep the notation ssimple we will construct a 95% confidence interval for the population
mean. We know from our standard normal calculations that:
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&® _ 0
€ 1.06< "M (1962005
p
§ 8%/ 9 I
&/ ng P

With alittle algebra, we have:

p(- 196s ; <Y - m<196s ;) =095
p(1.96s, >m- Y >-1.96s)=0.95
p(-1.96s, <m- Y <196s,)=0.95
p(Y-1.96s, <m<VY +196s,)=0.95

. . ) .
Since we typically do not know s ?, we can't evaluate s ; =—. Instead, we substitute our

7
estimate based on the sample to actually construct the interval. And, because we are estimating
the population variance, we must use the t-distribution for the shape of the sampling distribution
of the sample mean.

p[v- t*%<m<\7+t*%j:0.95
n n

A smple, correct probability statement about the confidence interval is:

the probability is 0.95 that the process of constructing the interval will result in an
interval containing the population mean.

We usually state that we are confident that the interval we constructed contains the popul ation
mean.
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