Please Note

> These pdf slides are configured for viewing on a computer screen.

Viewing them on hand-held devices may be difficult as they require a "slideshow" mode.
Do not try to print them out as there are many more pages than the number of slides listed at the bottom right of each screen.

Apologies for any inconvenience.

Linear and quadratic graphs Numeracy Workshop

geoff.coates@uwa.edu.au

STUDYSmarter
 Learning Language and Research Skds

Introduction

These slides introduce the cartesian plane and the features of linear and quadratic graphs.

Drop-in Study Sessions: Monday, Wednesday, Thursday, 10am-12pm, Meeting Room 2204, Second Floor, Social Sciences South Building, every week.

Website: Slides, worksheet, solutions.
www.studysmarter.uwa.edu.au \rightarrow Numeracy and Maths \rightarrow Online Resources

Email: geoff.coates@uwa.edu.au

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.
Each coordinate system is a tool for describing the position of objects relative to some agreed fixed point (called the origin).

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.
Each coordinate system is a tool for describing the position of objects relative to some agreed fixed point (called the origin).

If everybody agrees and knows where the origin is, then you can describe to anyone how to get to a certain point in space.

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.
Each coordinate system is a tool for describing the position of objects relative to some agreed fixed point (called the origin).

If everybody agrees and knows where the origin is, then you can describe to anyone how to get to a certain point in space.

Example: Start at the origin.

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.
Each coordinate system is a tool for describing the position of objects relative to some agreed fixed point (called the origin).

If everybody agrees and knows where the origin is, then you can describe to anyone how to get to a certain point in space.

Example: Start at the origin.

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.
Each coordinate system is a tool for describing the position of objects relative to some agreed fixed point (called the origin).

If everybody agrees and knows where the origin is, then you can describe to anyone how to get to a certain point in space.

Example: Start at the origin. Then, walk three metres East
origin

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.

Each coordinate system is a tool for describing the position of objects relative to some agreed fixed point (called the origin).

If everybody agrees and knows where the origin is, then you can describe to anyone how to get to a certain point in space.

Example: Start at the origin. Then, walk three metres East

origin

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.

Each coordinate system is a tool for describing the position of objects relative to some agreed fixed point (called the origin).

If everybody agrees and knows where the origin is, then you can describe to anyone how to get to a certain point in space.

Example: Start at the origin. Then, walk three metres East

origin

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.
Each coordinate system is a tool for describing the position of objects relative to some agreed fixed point (called the origin).

If everybody agrees and knows where the origin is, then you can describe to anyone how to get to a certain point in space.

Example: Start at the origin. Then, walk three metres East and five metres North

origin

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.
Each coordinate system is a tool for describing the position of objects relative to some agreed fixed point (called the origin).

If everybody agrees and knows where the origin is, then you can describe to anyone how to get to a certain point in space.

Example: Start at the origin. Then, walk three metres East and five metres North

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.
Each coordinate system is a tool for describing the position of objects relative to some agreed fixed point (called the origin).

If everybody agrees and knows where the origin is, then you can describe to anyone how to get to a certain point in space.

Example: Start at the origin. Then, walk three metres East and five metres North If everybody agrees on the origin, they should all end up in the same place.

A coordinate system: The Cartesian Plane

In mathematics, we use many different coordinate systems to quantify space.
Each coordinate system is a tool for describing the position of objects relative to some agreed fixed point (called the origin).

If everybody agrees and knows where the origin is, then you can describe to anyone how to get to a certain point in space.

Example: Start at the origin. Then, walk three metres East and five metres North If everybody agrees on the origin, they should all end up in the same place.

The Cartesian Plane

The most commonly used two-dimensional coordinate system is the Cartesian plane.

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).
Examples: A: $(3,2)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).

Examples: A: $(3,2)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).
Examples: A: $(3,2)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).
Examples: A: $(3,2)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).

$$
\text { Examples: A: }(3,2) \quad \mathrm{B}:(-1,4)
$$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).

$$
\text { Examples: A: }(3,2) \quad \mathrm{B}:(-1,4)
$$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).

$$
\text { Examples: A: }(3,2) \quad \mathrm{B}:(-1,4)
$$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).

Examples: A: $(3,2) \quad \mathrm{B}:(-1,4)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).
Examples: A: $(3,2) \quad B:(-1,4) \quad C:(-5,-2)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).
Examples: A: $(3,2) \quad B:(-1,4) \quad C:(-5,-2)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).

Examples: A: $(3,2) \quad$ B: $(-1,4) \quad C:(-5,-2)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).
Examples: A: $(3,2) \quad B:(-1,4) \quad C:(-5,-2)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).
Examples: A: $(3,2)$
B: $(-1,4)$
C: $(-5,-2)$
D: $(4,0)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).
Examples: A: $(3,2)$
B: $(-1,4)$
C: $(-5,-2)$
D: $(4,0)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).
Examples: A: $(3,2)$
B: $(-1,4)$
C: $(-5,-2)$
D: $(4,0)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).
Examples: A: $(3,2)$
B: $(-1,4)$
C: $(-5,-2)$
D: $(4,0)$

The Cartesian Plane

We specify points in the Cartesian plane as an ordered pair (x, y).
Examples: A: $(3,2)$
B: $(-1,4)$
C: $(-5,-2)$
D: $(4,0)$

Equations and Relationships

An equation which involves two variables is a mathematical way to express the relationship that exists between them.

Equations and Relationships

An equation which involves two variables is a mathematical way to express the relationship that exists between them.

Example: Consider the equation

$$
y=x^{2}
$$

The above equation says, that whatever number x is, y is always the square of this number.

Equations and Relationships

An equation which involves two variables is a mathematical way to express the relationship that exists between them.

Example: Consider the equation

$$
y=x^{2}
$$

The above equation says, that whatever number x is, y is always the square of this number.
So, y and x are fixed to each other in some way.

Equations and Relationships

$$
y=x^{2}
$$

It is convenient sometimes to plot all the points (x, y) which satisfy an equation.

Equations and Relationships

$$
y=x^{2}
$$

It is convenient sometimes to plot all the points (x, y) which satisfy an equation.
Usually, this is done by feeding in x values and retrieving y values.

Equations and Relationships

$$
y=x^{2}
$$

It is convenient sometimes to plot all the points (x, y) which satisfy an equation.
Usually, this is done by feeding in x values and retrieving y values.

$$
x=0
$$

Equations and Relationships

$$
y=x^{2}
$$

It is convenient sometimes to plot all the points (x, y) which satisfy an equation.
Usually, this is done by feeding in x values and retrieving y values.

$$
x=0 \Rightarrow y=0^{2}=0
$$

Equations and Relationships

$$
y=x^{2}
$$

It is convenient sometimes to plot all the points (x, y) which satisfy an equation.
Usually, this is done by feeding in x values and retrieving y values.

$$
x=0 \quad \Rightarrow \quad y=0^{2}=0 \quad \rightarrow \quad(x, y)=(0,0)
$$

Equations and Relationships

$$
y=x^{2}
$$

It is convenient sometimes to plot all the points (x, y) which satisfy an equation.
Usually, this is done by feeding in x values and retrieving y values.

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad y=0^{2}=0 \quad \rightarrow \quad(x, y)=(0,0) \\
& x=1 \quad \Rightarrow \quad y=1^{2}=1
\end{aligned}
$$

Equations and Relationships

$$
y=x^{2}
$$

It is convenient sometimes to plot all the points (x, y) which satisfy an equation.
Usually, this is done by feeding in x values and retrieving y values.

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad y=0^{2}=0 \quad \rightarrow \quad(x, y)=(0,0) \\
& x=1 \quad \Rightarrow \quad y=1^{2}=1 \quad \rightarrow \quad(x, y)=(1,1)
\end{aligned}
$$

Equations and Relationships

$$
y=x^{2}
$$

It is convenient sometimes to plot all the points (x, y) which satisfy an equation.
Usually, this is done by feeding in x values and retrieving y values.

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad y=0^{2}=0 \quad \rightarrow \quad(x, y)=(0,0) \\
& x=1 \quad \Rightarrow \quad y=1^{2}=1 \quad \rightarrow \quad(x, y)=(1,1) \\
& x=2 \quad \Rightarrow \quad y=2^{2}=4 \quad \rightarrow \quad(x, y)=(2,4)
\end{aligned}
$$

Equations and Relationships

$$
y=x^{2}
$$

It is convenient sometimes to plot all the points (x, y) which satisfy an equation.
Usually, this is done by feeding in x values and retrieving y values.

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad y=0^{2}=0 \quad \rightarrow \quad(x, y)=(0,0) \\
& x=1 \quad \Rightarrow \quad y=1^{2}=1 \quad \rightarrow \quad(x, y)=(1,1) \\
& x=2 \quad \Rightarrow \quad y=2^{2}=4 \quad \rightarrow \quad(x, y)=(2,4) \\
& x=3 \quad \Rightarrow \quad y=3^{2}=9 \quad \rightarrow \quad(x, y)=(3,9)
\end{aligned}
$$

Equations and Relationships

$$
y=x^{2}
$$

It is convenient sometimes to plot all the points (x, y) which satisfy an equation.
Usually, this is done by feeding in x values and retrieving y values.

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad y=0^{2}=0 \quad \rightarrow \quad(x, y)=(0,0) \\
& x=1 \quad \Rightarrow \quad y=1^{2}=1 \quad \rightarrow \quad(x, y)=(1,1) \\
& x=2 \quad \Rightarrow \quad y=2^{2}=4 \quad \rightarrow \quad(x, y)=(2,4) \\
& x=3 \quad \Rightarrow \quad y=3^{2}=9 \quad \rightarrow \quad(x, y)=(3,9)
\end{aligned}
$$

By feeding values through our relationship, we obtain points which we can display in the Cartesian plane!

Equations and Relationships

Graph the points:

$$
\{(0,0),(1,1),(2,4),(3,9)\}
$$

Equations and Relationships

Graphing a few points of a relationship draws only a piece of the mathematical relationship.

Equations and Relationships

Graphing a few points of a relationship draws only a piece of the mathematical relationship.

The relationship becomes smooth as we plot more and more values.

Equations and Relationships

Equations and Relationships

Equations and Relationships

Equations and Relationships

To get a smooth curve, we need to plot infinitely many points!

Equations and Relationships

To get a smooth curve, we need to plot infinitely many points!

This smooth curve is called the graph of the function.

Equations and Relationships

The graph of $y=x^{2}$:

Equations and Relationships

We have seen that mathematical relationships have a shape when plotted on the Cartesian plane.

A graph is useful, because it represents the function completely.

Linear equations

A mathematicial relationship of the form

$$
y=m x+c
$$

will produce a linear (straight line graph).

Linear equations

A mathematicial relationship of the form

will produce a linear (straight line graph).

Linear equations

A mathematicial relationship of the form

will produce a linear (straight line graph).

Linear equations

$$
y=2 x+1
$$

Linear equations

$$
y=2 x+1
$$

Here, $m=2$

Linear equations

$$
y=2 x+1
$$

Here, $m=2$ and $c=1$.

Linear equations

$$
\begin{aligned}
y & =2 x+1 \\
\text { Here, } m & =2 \text { and } c=1 .
\end{aligned}
$$

Plot some points (x, y) which satisfy the equation.

Linear equations

$$
\begin{aligned}
y & =2 x+1 \\
\text { Here, } m & =2 \text { and } c=1 .
\end{aligned}
$$

Plot some points (x, y) which satisfy the equation.

$$
x=0
$$

Linear equations

$$
y=2 x+1
$$

Here, $m=2$ and $c=1$.
Plot some points (x, y) which satisfy the equation.

$$
x=0 \quad \Rightarrow \quad y=2 \times 0+1=1
$$

Linear equations

$$
y=2 x+1
$$

Here, $m=2$ and $c=1$.
Plot some points (x, y) which satisfy the equation.

$$
x=0 \quad \Rightarrow \quad y=2 \times 0+1=1 \quad \rightarrow \quad(x, y)=(0,1)
$$

Linear equations

$$
y=2 x+1
$$

Here, $m=2$ and $c=1$.

Plot some points (x, y) which satisfy the equation.

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad y=2 \times 0+1=1 \quad \rightarrow \quad(x, y)=(0,1) \\
& x=1 \quad \Rightarrow \quad y=2 \times 1+1=3
\end{aligned}
$$

Linear equations

$$
y=2 x+1
$$

Here, $m=2$ and $c=1$.
Plot some points (x, y) which satisfy the equation.

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad y=2 \times 0+1=1 \quad \rightarrow \quad(x, y)=(0,1) \\
& x=1 \quad \Rightarrow \quad y=2 \times 1+1=3 \quad \rightarrow \quad(x, y)=(1,3)
\end{aligned}
$$

Linear equations

$$
y=2 x+1
$$

Here, $m=2$ and $c=1$.

Plot some points (x, y) which satisfy the equation.

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad y=2 \times 0+1=1 \quad \rightarrow \quad(x, y)=(0,1) \\
& x=1 \quad \Rightarrow \quad y=2 \times 1+1=3 \quad \rightarrow \quad(x, y)=(1,3) \\
& x=2 \quad \Rightarrow \quad y=2 \times 2+1=5
\end{aligned} \quad \rightarrow \quad(x, y)=(2,5)
$$

Linear equations

$$
y=2 x+1
$$

Here, $m=2$ and $c=1$.
Plot some points (x, y) which satisfy the equation.

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad y=2 \times 0+1=1 \quad \rightarrow \quad(x, y)=(0,1) \\
& x=1 \quad \Rightarrow \quad y=2 \times 1+1=3 \quad \rightarrow \quad(x, y)=(1,3) \\
& x=2 \quad \Rightarrow \quad y=2 \times 2+1=5 \quad \rightarrow \quad(x, y)=(2,5) \\
& x=-3 \quad \Rightarrow \quad y=2 \times-3+1=-5 \quad \rightarrow \quad(x, y)=(-3,-5)
\end{aligned}
$$

Linear equations

$$
y=2 x+1
$$

Here, $m=2$ and $c=1$.
Plot some points (x, y) which satisfy the equation.

$$
\begin{aligned}
& x=0 \quad \Rightarrow \quad y=2 \times 0+1=1 \quad \rightarrow \quad(x, y)=(0,1) \\
& x=1 \quad \Rightarrow \quad y=2 \times 1+1=3 \quad \rightarrow \quad(x, y)=(1,3) \\
& x=2 \quad \Rightarrow \quad y=2 \times 2+1=5 \quad \rightarrow \quad(x, y)=(2,5) \\
& x=-3 \quad \Rightarrow \quad y=2 \times-3+1=-5 \quad \rightarrow \quad(x, y)=(-3,-5)
\end{aligned}
$$

Now plot these points on the Cartesian plane.

Linear equations

$$
y=2 x+1
$$

Linear equations

The constants m and c in the linear equation

$$
y=m x+c
$$

represent features of the linear graph:

Linear equations

The constants m and c in the linear equation

$$
y=m x+c
$$

represent features of the linear graph:
c is the place where the line crosses the y-axis.

Linear equations

The constants m and c in the linear equation

$$
y=m x+c
$$

represent features of the linear graph:
c is the place where the line crosses the y-axis.
It's the value of y when $x=0$ (or the co-ordinate $(0, c)$).

Linear equations

The constants m and c in the linear equation

$$
y=m x+c
$$

represent features of the linear graph:
c is the place where the line crosses the y-axis.
It's the value of y when $x=0$ (or the co-ordinate $(0, c)$).
We call it the y-intercept of the line.

Linear equations

The constants m and c in the linear equation

$$
y=m x+c
$$

represent features of the linear graph:
c is the place where the line crosses the y-axis.
It's the value of y when $x=0$ (or the co-ordinate $(0, c)$).
We call it the y-intercept of the line.
m quantifies how steeply the line slopes upwards as we move from left to right (or downwards if this number is negative).

Linear equations

The constants m and c in the linear equation

$$
y=m x+c
$$

represent features of the linear graph:
c is the place where the line crosses the y-axis.
It's the value of y when $x=0$ (or the co-ordinate $(0, c)$).
We call it the y-intercept of the line.
m quantifies how steeply the line slopes upwards as we move from left to right (or downwards if this number is negative).

Every 1 unit step we take to the right ("run") results in an m unit "rise" (or fall) vertically.

Linear equations

The constants m and c in the linear equation

$$
y=m x+c
$$

represent features of the linear graph:
c is the place where the line crosses the y-axis.
It's the value of y when $x=0$ (or the co-ordinate $(0, c)$).
We call it the y-intercept of the line.
m quantifies how steeply the line slopes upwards as we move from left to right (or downwards if this number is negative).

Every 1 unit step we take to the right ("run") results in an m unit "rise" (or fall) vertically. We call it the gradient of the line.

Linear equations

$$
y=4 x-5
$$

Linear equations

$$
y=4-\frac{1}{2} x
$$

Linear equations

Sometimes, we may have to rearrange an equation before it looks anything like

$$
y=m x+c
$$

Linear equations

Sometimes, we may have to rearrange an equation before it looks anything like

$$
y=m x+c
$$

Each of the following equations are linear functions:

$$
\begin{gathered}
5 y=3 x-20 \\
2 y+8 x=-3 \\
\frac{4 x+20}{3 y}=2 \\
\frac{y}{x}=4
\end{gathered}
$$

Linear equations

Sometimes, we may have to rearrange an equation before it looks anything like

$$
y=m x+c .
$$

Each of the following equations are linear functions:

$$
\begin{gathered}
5 y=3 x-20 \\
2 y+8 x=-3 \\
\frac{4 x+20}{3 y}=2 \\
\frac{y}{x}=4
\end{gathered}
$$

Have a go at rearranging them!

Quadratic Functions

A quadratic function is given by an equation of the form

$$
y=a x^{2}+b x+c
$$

where a, b, and c are constants (and $a \neq 0$).

Quadratic Functions

A quadratic function is given by an equation of the form

$$
y=a x^{2}+b x+c
$$

where a, b, and c are constants (and $a \neq 0$).

$$
\text { Examples: } \begin{aligned}
& y=3 x^{2}+2 x-5 \\
& y=-2 x^{2}-5 x+3
\end{aligned}
$$

Quadratic Functions

A quadratic function is given by an equation of the form

$$
y=a x^{2}+b x+c
$$

where a, b, and c are constants (and $a \neq 0$).

$$
\text { Examples: } \begin{aligned}
& y=3 x^{2}+2 x-5 \\
& y=-2 x^{2}-5 x+3
\end{aligned}
$$

These functions take on the shape of a parabola when we graph them.

Properties of quadratic functions

A quadratic function has four properties of interest.

Properties of quadratic functions

A quadratic function has four properties of interest.

Properties of quadratic functions

A quadratic function has four properties of interest.

Properties of quadratic functions

A quadratic function has four properties of interest.

Properties of quadratic functions

A quadratic function has four properties of interest.

Properties of quadratic functions

A quadratic function has four properties of interest.

Properties of quadratic functions

A quadratic function has four properties of interest.

Properties of quadratic functions

A quadratic function has four properties of interest.

Properties of quadratic functions

A quadratic function has four properties of interest.

Properties of quadratic functions

The quadratic function graphed on the previous page can be written in three useful ways:

Properties of quadratic functions

The quadratic function graphed on the previous page can be written in three useful ways:

Properties of quadratic functions

The quadratic function graphed on the previous page can be written in three useful ways:

Properties of quadratic functions

The quadratic function graphed on the previous page can be written in three useful ways:

Standard form:	$y=x^{2}-6 x+5$
Factored form:	$y=(x-1)(x-5)$

Properties of quadratic functions

The quadratic function graphed on the previous page can be written in three useful ways:

$$
\begin{aligned}
\text { Standard form: } & y=x^{2}-6 x+5 \\
\text { Factored form: } & y=(x-1)(x-5) \\
\text { Turning Point form: } & y=(x-3)^{2}-4
\end{aligned}
$$

Properties of quadratic functions

The quadratic function graphed on the previous page can be written in three useful ways:

$$
\begin{aligned}
\text { Standard form: } & y=x^{2}-6 x+5 \\
\text { Factored form: } & y=(x-1)(x-5) \\
\text { Turning Point form: } & y=(x-3)^{2}-4
\end{aligned}
$$

Each form provides one or more properties of the quadratic graph.

Properties of quadratic functions

The quadratic function graphed on the previous page can be written in three useful ways:

$$
\begin{aligned}
\text { Standard form: } & y=x^{2}-6 x+5 \\
\text { Factored form: } & y=(x-1)(x-5) \\
\text { Turning Point form: } & y=(x-3)^{2}-4
\end{aligned}
$$

Each form provides one or more properties of the quadratic graph.
Converting from one form to another requires algebraic manipulation which we won't discuss in this workshop.

Quadratic functions: helpful hints

- In standard form, the coeffcient of x^{2} (multiplier $\left.a\right)$ is positive $(a=1)$, so the graph is concave up (ie. it looks like a smile).

Quadratic functions: helpful hints

- In standard form, the coeffcient of x^{2} (multiplier $\left.a\right)$ is positive $(a=1)$, so the graph is concave up (ie. it looks like a smile).

If the coeffcient was negative, the graph would be concave down (ie. a frown).

Quadratic functions: helpful hints

- In standard form, the coeffcient of x^{2} (multiplier $\left.a\right)$ is positive $(a=1)$, so the graph is concave up (ie. it looks like a smile).

If the coeffcient was negative, the graph would be concave down (ie. a frown).

- The y-intercept occurs when $x=0$.

Quadratic functions: helpful hints

- In standard form, the coeffcient of x^{2} (multiplier a) is positive $(a=1)$, so the graph is concave up (ie. it looks like a smile).

If the coeffcient was negative, the graph would be concave down (ie. a frown).

- The y-intercept occurs when $x=0$.
- The x-intercept(s) occur(s) when $y=0$.

Quadratic functions: helpful hints

- In standard form, the coeffcient of x^{2} (multiplier a) is positive $(a=1)$, so the graph is concave up (ie. it looks like a smile).

If the coeffcient was negative, the graph would be concave down (ie. a frown).

- The y-intercept occurs when $x=0$.
- The x-intercept(s) occur(s) when $y=0$.
(There may be two, one or no x-intercepts.)

Quadratic functions: helpful hints

- In standard form, the coeffcient of x^{2} (multiplier a) is positive $(a=1)$, so the graph is concave up (ie. it looks like a smile).

If the coeffcient was negative, the graph would be concave down (ie. a frown).

- The y-intercept occurs when $x=0$.
- The x-intercept(s) occur(s) when $y=0$.
(There may be two, one or no x-intercepts.)
- The turning point always falls on the line of symmetry.

Quadratic functions: helpful hints

- In standard form, the coeffcient of x^{2} (multiplier a) is positive $(a=1)$, so the graph is concave up (ie. it looks like a smile).

If the coeffcient was negative, the graph would be concave down (ie. a frown).

- The y-intercept occurs when $x=0$.
- The x-intercept(s) occur(s) when $y=0$.
(There may be two, one or no x-intercepts.)
- The turning point always falls on the line of symmetry.
- When there are two x-intercept(s), they are distanced equally from the line of symmetry.

Quadratic functions: helpful hints

- In standard form, the coeffcient of x^{2} (multiplier a) is positive $(a=1)$, so the graph is concave up (ie. it looks like a smile).

If the coeffcient was negative, the graph would be concave down (ie. a frown).

- The y-intercept occurs when $x=0$.
- The x-intercept(s) occur(s) when $y=0$.
(There may be two, one or no x-intercepts.)
- The turning point always falls on the line of symmetry.
- When there are two x-intercept(s), they are distanced equally from the line of symmetry. When there is one x-intercept(s), it occurs exactly on the line of symmetry.

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

```
Equation smile/frown y-intercept line of symmetry
```


Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{gathered}
\text { Equation smile/frown } y \text {-intercept line of symmetry } \\
y=2 x^{2}+4 x-5
\end{gathered}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{ccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } \\
y=2 x^{2}+4 x-5 & \text { smile } &
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5)
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & &
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & \text { smile } & &
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) &
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=\frac{--2}{2 \times 1}=1 \tag{0,5}
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=\frac{--2}{2 \times 1}=1 \\
y=-3 x^{2}-7 x+3 & & &
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=\frac{--2}{2 \times 1}=1 \\
y=-3 x^{2}-7 x+3 & \text { frown } & &
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=\frac{--2}{2 \times 1}=1 \\
y=-3 x^{2}-7 x+3 & \text { frown } & (0,3) &
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=\frac{--2}{2 \times 1}=1 \\
y=-3 x^{2}-7 x+3 & \text { frown } & (0,3) & x=\frac{--7}{2 \times-3}=-\frac{7}{6}
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=\frac{--2}{2 \times 1}=1 \\
y=-3 x^{2}-7 x+3 & \text { frown } & (0,3) & x=\frac{--7}{2 \times-3}=- \\
y=4 x^{2}+4 & & \tag{0,5}
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=\frac{--2}{2 \times 1}=1 \\
y=-3 x^{2}-7 x+3 & \text { frown } & (0,3) & x=\frac{--7}{2 \times-3}=-\frac{7}{6} \\
y=4 x^{2}+4 & \text { smile } & &
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=\frac{--2}{2 \times 1}=1 \\
y=-3 x^{2}-7 x+3 & \text { frown } & (0,3) & x=\frac{--7}{2 \times-3}=-\frac{7}{6} \\
y=4 x^{2}+4 & \text { smile } & (0,4) & \tag{0,5}
\end{array}
$$

Quadratic Functions: Standard Form

$$
y=a x^{2}+b x+c
$$

In standard form, the sign of a determines whether it's a smile or frown, the y-intercept is $(0, c)$ and the line of symmetry is $x=\frac{-b}{2 a}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=\frac{-4}{2 \times 2}=-1 \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=\frac{--2}{2 \times 1}=1 \tag{0,5}\\
y=-3 x^{2}-7 x+3 & \text { frown } & (0,3) & x=\frac{--7}{2 \times-3}=-\frac{7}{6} \\
y=4 x^{2}+4 & \text { smile } & (0,4) & x=\frac{-0}{2 \times 4}=0
\end{array}
$$

Quadratic Functions: Standard Form

$$
\begin{array}{ccc}
\text { Equation } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5)
\end{array}
$$

Quadratic Functions: Standard Form

$$
\begin{array}{ccc}
\text { Equation } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5)
\end{array}
$$

We have the x-value of the turning point because we have the line of symmetry.

Quadratic Functions: Standard Form

$$
\begin{array}{cccc}
\text { Equation } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=-1
\end{array}
$$

We have the x-value of the turning point because we have the line of symmetry.
To find the y-coordinate of the turning point we simply substitute this x-value into the equation:

Quadratic Functions: Standard Form

$$
\begin{array}{ccc}
\text { Equation } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5)
\end{array}
$$

We have the x-value of the turning point because we have the line of symmetry.

To find the y-coordinate of the turning point we simply substitute this x-value into the equation:

$$
y=2(-1)^{2}+4(-1)-5
$$

Quadratic Functions: Standard Form

$$
\begin{array}{cccc}
\text { Equation } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=-1
\end{array}
$$

We have the x-value of the turning point because we have the line of symmetry.
To find the y-coordinate of the turning point we simply substitute this x-value into the equation:

$$
y=2(-1)^{2}+4(-1)-5=2-4-5=-7
$$

Quadratic Functions: Standard Form

$$
\begin{array}{cccc}
\text { Equation } & y \text {-intercept } & \text { line of symmetry } \\
y=2 x^{2}+4 x-5 & \text { smile } & (0,-5) & x=-1
\end{array}
$$

We have the x-value of the turning point because we have the line of symmetry.
To find the y-coordinate of the turning point we simply substitute this x-value into the equation:

$$
y=2(-1)^{2}+4(-1)-5=2-4-5=-7
$$

So, the turning point is $(-1,-7)$.

Quadratic Functions: Standard Form

Equation	y-intercept	line of symmetry	turning point
$y=2 x^{2}+4 x-5$	smile	$(0,-5)$	$x=-1$

Quadratic Functions: Standard Form

Equation	y-intercept	line of symmetry	turning point
$y=2 x^{2}+4 x-5$	smile	$(0,-5)$	$x=-1$

Quadratic Functions: Standard Form

Equation	y-intercept	line of symmetry	turning point
$y=2 x^{2}+4 x-5$	smile	$(0,-5)$	$x=-1$

Quadratic Functions: Standard Form

Equation	y-intercept	line of symmetry	turning point
$y=2 x^{2}+4 x-5$	smile	$(0,-5)$	$x=-1$

Quadratic Functions: Standard Form

Equation	y-intercept	line of symmetry	turning point
$y=2 x^{2}+4 x-5$	smile	$(0,-5)$	$x=-1$

Quadratic Functions: Standard Form

Equation	y-intercept	line of symmetry	turning point
$y=2 x^{2}+4 x-5$	smile	$(0,-5)$	$x=-1$

Quadratic Functions: Standard Form

Equation	y-intercept	line of symmetry	turning point
$y=2 x^{2}+4 x-5$	smile	$(0,-5)$	$x=-1$

We now know that this quadratic has two x-intercepts.

Quadratic Functions: Standard Form

Equation y-intercept line of symmetry turning point

$$
y=2 x^{2}+4 x-5 \quad \text { smile } \quad(0,-5) \quad x=-1 \quad(-1,-7)
$$

We now know that this quadratic has two x-intercepts. If we need the exact values we have to either factorize the quadratic or use the quadratic formula.

Quadratic Functions: Standard Form

Equation $\quad y$-intercept line of symmetry

$$
y=x^{2}-2 x+5 \quad \text { smile } \quad(0,5) \quad x=1
$$

Quadratic Functions: Standard Form

$$
\begin{array}{cccc}
\text { Equation } & y \text {-intercept } & \text { line of symmetry } \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=1
\end{array}
$$

To find the y-coordinate of the turning point we simply substitute the x-value into the equation:

Quadratic Functions: Standard Form

$$
\begin{array}{cccc}
\text { Equation } & y \text {-intercept } & \text { line of symmetry } \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=1
\end{array}
$$

To find the y-coordinate of the turning point we simply substitute the x-value into the equation:

$$
y=(1)^{2}-2(1)+5=
$$

Quadratic Functions: Standard Form

$$
\begin{array}{cccc}
\text { Equation } & y \text {-intercept } & \text { line of symmetry } \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=1
\end{array}
$$

To find the y-coordinate of the turning point we simply substitute the x-value into the equation:

$$
y=(1)^{2}-2(1)+5=4
$$

Quadratic Functions: Standard Form

$$
\begin{array}{cccc}
\text { Equation } & y \text {-intercept } & \text { line of symmetry } \\
y=x^{2}-2 x+5 & \text { smile } & (0,5) & x=1
\end{array}
$$

To find the y-coordinate of the turning point we simply substitute the x-value into the equation:

$$
y=(1)^{2}-2(1)+5=4
$$

So, the turning point is $(1,4)$.

Quadratic Functions: Standard Form

Equation	y-intercept	line of symmetry	turning point
$y=x^{2}-2 x+5$	smile	$(0,5)$	$x=1$

Quadratic Functions: Standard Form

Equation	y-intercept	line of symmetry	turning point	
$y=x^{2}-2 x+5$	smile	$(0,5)$	$x=1$	$(1,4)$

Quadratic Functions: Standard Form

Equation	y-intercept	line of symmetry	turning point	
$y=x^{2}-2 x+5$	smile	$(0,5)$	$x=1$	$(1,4)$

Quadratic Functions: Standard Form

Quadratic Functions: Standard Form

Quadratic Functions: Standard Form

Quadratic Functions: Standard Form

Equation $\quad y$-intercept line of symmetry turning point

$$
\begin{equation*}
y=x^{2}-2 x+5 \quad \text { smile } \quad(0,5) \quad x=1 \tag{1,4}
\end{equation*}
$$

We can now see that this graph has no x-intercepts (which can also be discovered via the the quadratic formula).

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are

$$
(e, 0) \text { and }(f, 0)
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Equation smile/frown x-intercepts line of symmetry

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Equation smile/frown x-intercepts line of symmetry

$$
y=2(x-1)(x-3)
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Equation smile/frown x-intercepts line of symmetry

$$
y=2(x-1)(x-3) \quad \text { smile }
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

$$
\begin{array}{ccc}
\text { Equation } & \text { smile/frown } & x \text {-intercepts }
\end{array} \text { line of symmetry }
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & x \text {-intercepts } & \text { line of symmetry } \\
y=2(x-1)(x-3) & \text { smile } & (1,0),(3,0) & x=\frac{1+3}{2}=2
\end{array}
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Equation smile/frown x-intercepts line of symmetry

$$
y=2(x-1)(x-3) \quad \text { smile } \quad(1,0),(3,0) \quad x=\frac{1+3}{2}=2
$$

$$
y=-(x-2)(x-4)
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Equation smile/frown x-intercepts line of symmetry

$$
y=2(x-1)(x-3) \quad \text { smile } \quad(1,0),(3,0) \quad x=\frac{1+3}{2}=2
$$

$$
y=-(x-2)(x-4) \quad \text { frown }
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Equation smile/frown x-intercepts line of symmetry

$$
\left.\begin{array}{lll}
y=2(x-1)(x-3) & \text { smile } & (1,0),(3,0)
\end{array} \quad x=\frac{1+3}{2}=2\right\}
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Equation smile/frown x-intercepts line of symmetry

$$
\begin{array}{llll}
y=2(x-1)(x-3) & \text { smile } & (1,0),(3,0) & x=\frac{1+3}{2}=2 \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=\frac{2+4}{2}=3
\end{array}
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Equation smile/frown x-intercepts line of symmetry

$$
\begin{array}{llll}
y=2(x-1)(x-3) & \text { smile } & (1,0),(3,0) & x=\frac{1+3}{2}=2 \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=\frac{2+4}{2}=3
\end{array}
$$

$$
y=2(x-3)(x+3)
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Equation smile/frown x-intercepts line of symmetry

$$
\begin{array}{llll}
y=2(x-1)(x-3) & \text { smile } & (1,0),(3,0) & x=\frac{1+3}{2}=2 \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=\frac{2+4}{2}=3
\end{array}
$$

$$
y=2(x-3)(x+3) \quad \text { smile }
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Equation smile/frown x-intercepts line of symmetry

$$
y=2(x-1)(x-3) \quad \text { smile } \quad(1,0),(3,0) \quad x=\frac{1+3}{2}=2
$$

$$
y=-(x-2)(x-4) \quad \text { frown } \quad(2,0),(4,0) \quad x=\frac{2+4}{2}=3
$$

$$
y=2(x-3)(x+3) \quad \text { smile } \quad(3,0),(-3,0)
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.

Equation smile/frown x-intercepts line of symmetry

$$
y=2(x-1)(x-3) \quad \text { smile } \quad(1,0),(3,0) \quad x=\frac{1+3}{2}=2
$$

$$
y=-(x-2)(x-4) \quad \text { frown } \quad(2,0),(4,0) \quad x=\frac{2+4}{2}=3
$$

$$
y=2(x-3)(x+3) \quad \text { smile } \quad(3,0),(-3,0) \quad x=\frac{3+-3}{2}=0
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.
Equation smile/frown x-intercepts line of symmetry

$$
\begin{array}{llll}
y=2(x-1)(x-3) & \text { smile } & (1,0),(3,0) & x=\frac{1+3}{2}=2 \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=\frac{2+4}{2}=3 \\
y=2(x-3)(x+3) & \text { smile } & (3,0),(-3,0) & x=\frac{3+-3}{2}=0
\end{array}
$$

$$
y=-2(x+3)^{2}
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.
Equation smile/frown x-intercepts line of symmetry

$$
y=2(x-1)(x-3) \quad \text { smile } \quad(1,0),(3,0) \quad x=\frac{1+3}{2}=2
$$

$$
y=-(x-2)(x-4) \quad \text { frown } \quad(2,0),(4,0) \quad x=\frac{2+4}{2}=3
$$

$$
y=2(x-3)(x+3) \quad \text { smile } \quad(3,0),(-3,0) \quad x=\frac{3+-3}{2}=0
$$

$$
y=-2(x+3)^{2} \quad \text { frown }
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.
Equation smile/frown x-intercepts line of symmetry

$$
y=2(x-1)(x-3) \quad \text { smile } \quad(1,0),(3,0) \quad x=\frac{1+3}{2}=2
$$

$$
y=-(x-2)(x-4) \quad \text { frown } \quad(2,0),(4,0) \quad x=\frac{2+4}{2}=3
$$

$$
y=2(x-3)(x+3) \quad \text { smile } \quad(3,0),(-3,0) \quad x=\frac{3+-3}{2}=0
$$

$$
y=-2(x+3)^{2} \quad \text { frown } \quad(-3,0)
$$

Quadratic Functions: Factored Form

$$
y=d(x-e)(x-f)
$$

In factored form, the sign of d determines whether it's a smile or frown, the x-intercepts are $(e, 0)$ and $(f, 0)$, which means that the line of symmetry is $x=\frac{e+f}{2}$.
Equation smile/frown x-intercepts line of symmetry

$$
y=2(x-1)(x-3) \quad \text { smile } \quad(1,0),(3,0) \quad x=\frac{1+3}{2}=2
$$

$$
y=-(x-2)(x-4) \quad \text { frown } \quad(2,0),(4,0) \quad x=\frac{2+4}{2}=3
$$

$$
y=2(x-3)(x+3) \quad \text { smile } \quad(3,0),(-3,0) \quad x=\frac{3+-3}{2}=0
$$

$$
y=-2(x+3)^{2} \quad \text { frown } \quad(-3,0) \quad x=-3
$$

Quadratic Functions: Factored Form

$$
\begin{array}{ccc}
\text { Equation } & x \text {-intercepts } & \text { line of symmetry } \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0)
\end{array}
$$

Quadratic Functions: Factored Form

$$
\begin{array}{crrr}
\text { Equation } & x \text {-intercepts } & \text { line of symn } \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=3
\end{array}
$$

The y-intercept isn't obvious in this form but we can find it by substituting $x=0$ into the equation:

Quadratic Functions: Factored Form

$$
\begin{array}{crrr}
\text { Equation } & x \text {-intercepts } & \text { line of symn } \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=3
\end{array}
$$

The y-intercept isn't obvious in this form but we can find it by substituting $x=0$ into the equation:

$$
y=-(0-2)(0-4)
$$

Quadratic Functions: Factored Form

$$
\begin{array}{crrr}
\text { Equation } & x \text {-intercepts } & \text { line of symn } \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=3
\end{array}
$$

The y-intercept isn't obvious in this form but we can find it by substituting $x=0$ into the equation:

$$
y=-(0-2)(0-4)=-(-2)(-4)=-8
$$

Quadratic Functions: Factored Form

$$
\begin{array}{crrr}
\text { Equation } & x \text {-intercepts } & \text { line of symn } \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=3
\end{array}
$$

The y-intercept isn't obvious in this form but we can find it by substituting $x=0$ into the equation:

$$
y=-(0-2)(0-4)=-(-2)(-4)=-8
$$

So, the y-intercept is $(0,-8)$.

Quadratic Functions: Factored Form

$$
\begin{array}{cccc}
\text { Equation } & x \text {-intercepts } & \text { line of symmetry } & y \text {-intercept } \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=3
\end{array}
$$

Quadratic Functions: Factored Form

$$
\begin{array}{cccc}
\text { Equation } & x \text {-intercepts } & \text { line of symmetry } & y \text {-intercept } \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=3
\end{array}
$$

As before, we have the x-value of the turning point because we have the line of symmetry.

Quadratic Functions: Factored Form

$$
\begin{array}{cccc}
\text { Equation } & x \text {-intercepts } & \text { line of symmetry } & y \text {-intercept } \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=3
\end{array}
$$

As before, we have the x-value of the turning point because we have the line of symmetry.

To find the y-coordinate of the turning point we simply substitute the x-value into the equation:

Quadratic Functions: Factored Form

$$
\begin{array}{cccc}
\text { Equation } & x \text {-intercepts } & \text { line of symmetry } & y \text {-intercept } \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=3
\end{array}
$$

As before, we have the x-value of the turning point because we have the line of symmetry.

To find the y-coordinate of the turning point we simply substitute the x-value into the equation:

$$
y=-(3-2)(3-4)
$$

Quadratic Functions: Factored Form

$$
\begin{array}{cccc}
\text { Equation } & x \text {-intercepts } & \text { line of symmetry } & y \text {-intercept } \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=3
\end{array}
$$

As before, we have the x-value of the turning point because we have the line of symmetry.

To find the y-coordinate of the turning point we simply substitute the x-value into the equation:

$$
y=-(3-2)(3-4)=-(1)(-1)=1
$$

Quadratic Functions: Factored Form

$$
\begin{array}{cccc}
\text { Equation } & x \text {-intercepts } & \text { line of symmetry } & y \text {-intercept } \\
y=-(x-2)(x-4) & \text { frown } & (2,0),(4,0) & x=3
\end{array}
$$

As before, we have the x-value of the turning point because we have the line of symmetry.

To find the y-coordinate of the turning point we simply substitute the x-value into the equation:

$$
y=-(3-2)(3-4)=-(1)(-1)=1
$$

So, the turning point is $(3,1)$.

Quadratic Functions: Factored Form

$$
\begin{array}{ccccc}
\text { Equation } & x \text {-intercepts } & \text { I. o. s. } & y \text {-intercept } & \text { t. p. } \\
y=-(x-2)(x-4) & \text { smile } & (2,0),(4,0) & x=3 & (0,-8) \\
(3,1)
\end{array}
$$

Quadratic Functions: Factored Form

Equation x-intercepts I. o. s. y-intercept t. p.

$$
y=-(x-2)(x-4) \quad \text { smile } \quad(2,0),(4,0) \quad x=3 \quad(0,-8) \quad(3,1)
$$

Quadratic Functions: Factored Form

Equation x-intercepts I. o. s. y-intercept t. p.

$$
y=-(x-2)(x-4) \quad \text { smile } \quad(2,0),(4,0) \quad x=3 \quad(0,-8) \quad(3,1)
$$

Quadratic Functions: Factored Form

Equation x-intercepts I. o. s. y-intercept t. p.

$$
\begin{equation*}
y=-(x-2)(x-4) \quad \text { smile } \quad(2,0),(4,0) \quad x=3 \quad(0,-8) \tag{3,1}
\end{equation*}
$$

Quadratic Functions: Factored Form

Equation x-intercepts I. o. s. y-intercept t. p.

$$
\begin{equation*}
y=-(x-2)(x-4) \quad \text { smile } \quad(2,0),(4,0) \quad x=3 \quad(0,-8) \tag{3,1}
\end{equation*}
$$

Quadratic Functions: Factored Form

Equation x-intercepts I. o. s. y-intercept t. p.

$$
\begin{equation*}
y=-(x-2)(x-4) \quad \text { smile } \quad(2,0),(4,0) \quad x=3 \quad(0,-8) \tag{3,1}
\end{equation*}
$$

Quadratic Functions: Factored Form

Equation x-intercepts I. o. s. y-intercept t. p.

$$
\begin{equation*}
y=-(x-2)(x-4) \quad \text { smile } \quad(2,0),(4,0) \quad x=3 \quad(0,-8) \tag{3,1}
\end{equation*}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k)

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

Equation smile/frown turning point line of symmetry

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{gathered}
\text { Equation smile/frown turning point line of symmetry } \\
y=3(x-1)^{2}+4
\end{gathered}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{ccc}
\text { Equation } & \text { smile/frown } & \text { turning point } \\
y=3(x-1)^{2}+4 & \text { smile } &
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{ccc}
\text { Equation } & \text { smile/frown } & \text { turning point } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4)
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & & &
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & \text { frown } & &
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & \text { frown } & (2,-5) &
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & \text { frown } & (2,-5) & x=2
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & \text { frown } & (2,-5) & x=2 \\
y=(x+5)^{2}+1 & & &
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & \text { frown } & (2,-5) & x=2 \\
y=(x+5)^{2}+1 & \text { smile } & &
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & \text { frown } & (2,-5) & x=2 \\
y=(x+5)^{2}+1 & \text { smile } & (-5,1) &
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & \text { frown } & (2,-5) & x=2 \\
y=(x+5)^{2}+1 & \text { smile } & (-5,1) & x=-5
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & \text { frown } & (2,-5) & x=2 \\
y=(x+5)^{2}+1 & \text { smile } & (-5,1) & x=-5 \\
y=-(x+3)^{2} & & & \\
y & & &
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & \text { frown } & (2,-5) & x=2 \\
y=(x+5)^{2}+1 & \text { smile } & (-5,1) & x=-5 \\
y=-(x+3)^{2} & \text { frown } & &
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & \text { frown } & (2,-5) & x=2 \\
y=(x+5)^{2}+1 & \text { smile } & (-5,1) & x=-5 \\
y=-(x+3)^{2} & \text { frown } & (-3,0) &
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
y=g(x-h)^{2}+k
$$

In turning point form, the sign of g determines whether it's a smile or frown, the turning point is (h, k) and the line of symmetry is $x=h$.

$$
\begin{array}{cccc}
\text { Equation } & \text { smile/frown } & \text { turning point } & \text { line of symmetry } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \\
y=-2(x-2)^{2}-5 & \text { frown } & (2,-5) & x=2 \\
y=(x+5)^{2}+1 & \text { smile } & (-5,1) & x=-5 \\
y=-(x+3)^{2} & \text { frown } & (-3,0) & x=-3
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
\begin{array}{cccr}
\text { Equation } & \text { turning point } & \text { line of symr } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1 \tag{1,4}
\end{array}
$$

Quadratic Functions: Turning Point Form

$$
\begin{array}{cccr}
\text { Equation } & \text { turning point } & \text { line of symr } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1
\end{array}
$$

The y-intercept isn't obvious in this form but we can find it by substituting $x=0$ into the equation:

Quadratic Functions: Turning Point Form

$$
\begin{array}{cccr}
\text { Equation } & \text { turning point } & \text { line of symn } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4) & x=1
\end{array}
$$

The y-intercept isn't obvious in this form but we can find it by substituting $x=0$ into the equation:

$$
y=3(0-1)^{2}+4
$$

Quadratic Functions: Turning Point Form

$$
\begin{array}{ccr}
\text { Equation } & \text { turning point } & \text { line of symn } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4)
\end{array}
$$

The y-intercept isn't obvious in this form but we can find it by substituting $x=0$ into the equation:

$$
y=3(0-1)^{2}+4=3(-1)^{2}+4=7
$$

Quadratic Functions: Turning Point Form

$$
\begin{array}{ccr}
\text { Equation } & \text { turning point } & \text { line of symr } \\
y=3(x-1)^{2}+4 & \text { smile } & (1,4)
\end{array}
$$

The y-intercept isn't obvious in this form but we can find it by substituting $x=0$ into the equation:

$$
y=3(0-1)^{2}+4=3(-1)^{2}+4=7
$$

So, the y-intercept is $(0,7)$.

Quadratic Functions: Factored Form

Equation turning point line of symmetry y-intercept

$$
y=3(x-1)^{2}+4 \quad \text { smile } \quad(1,4) \quad x=1 \quad(0,7)
$$

Quadratic Functions: Factored Form

Equation turning point line of symmetry y-intercept

$$
\begin{equation*}
y=3(x-1)^{2}+4 \quad \text { smile } \quad(1,4) \quad x=1 \quad(0,7) \tag{1,4}
\end{equation*}
$$

Quadratic Functions: Factored Form

Equation turning point line of symmetry y-intercept

$$
y=3(x-1)^{2}+4 \quad \text { smile } \quad(1,4) \quad x=1 \quad(0,7)
$$

Quadratic Functions: Factored Form

Equation turning point line of symmetry y-intercept

$$
y=3(x-1)^{2}+4 \quad \text { smile } \quad(1,4) \quad x=1 \quad(0,7)
$$

Quadratic Functions: Factored Form

Equation turning point line of symmetry y-intercept

$$
y=3(x-1)^{2}+4 \quad \text { smile } \quad(1,4) \quad x=1 \quad(0,7)
$$

Quadratic Functions: Factored Form

Equation turning point line of symmetry y-intercept

$$
y=3(x-1)^{2}+4 \quad \text { smile } \quad(1,4) \quad x=1 \quad(0,7)
$$

Using STUDYSmarter Resources

This resource was developed for UWA students by the STUDYSmarter team for the numeracy program. When using our resources, please retain them in their original form with both the STUDYSmarter heading and the UWA crest.

The University of WESTERN AUSTRALIA
$\oplus(1) \Theta$

