Please Note

These pdf slides are configured for viewing on a computer screen.
Viewing them on hand-held devices may be difficult as they require a "slideshow" mode.

Do not try to print them out as there are many more pages than the number of slides listed at the bottom right of each screen.

Apologies for any inconvenience.

Numbers and Fractions

Numeracy Workshop

geoff.coates@uwa.edu.au

STUDYSmarter
 Learning Language and Research Skils

Introduction

These slides are designed to help you calculate with different types of numbers and fractions.

Introduction

These slides are designed to help you calculate with different types of numbers and fractions.

Workshop resources: These slides are available online:
www.studysmarter.uwa.edu.au \rightarrow Numeracy and Maths \rightarrow Online Resources

Introduction

These slides are designed to help you calculate with different types of numbers and fractions.

Workshop resources: These slides are available online:
www.studysmarter.uwa.edu.au \rightarrow Numeracy and Maths \rightarrow Online Resources

Next Workshop: See your Workshop Calendar \rightarrow www.studysmarter.uwa.edu.au

Introduction

These slides are designed to help you calculate with different types of numbers and fractions.

Workshop resources: These slides are available online:
www.studysmarter.uwa.edu.au \rightarrow Numeracy and Maths \rightarrow Online Resources

Next Workshop: See your Workshop Calendar \rightarrow www.studysmarter.uwa.edu.au

Drop-in Study Sessions: Monday, Wednesday, Friday, 10am-12pm, Room 2202, Second Floor, Social Sciences South Building, every week.

Introduction

These slides are designed to help you calculate with different types of numbers and fractions.

Workshop resources: These slides are available online:
www.studysmarter.uwa.edu.au \rightarrow Numeracy and Maths \rightarrow Online Resources

Next Workshop: See your Workshop Calendar \rightarrow www.studysmarter.uwa.edu.au

Drop-in Study Sessions: Monday, Wednesday, Friday, 10am-12pm, Room 2202, Second Floor, Social Sciences South Building, every week.

Email: geoff.coates@uwa.edu.au

Counting Numbers

Historically, numbers were first used to count things (sheep, children, etc).
$1,2,3,4,5, \ldots$

Counting Numbers

Historically, numbers were first used to count things (sheep, children, etc).

$$
1,2,3,4,5, \ldots
$$

Eg. "3 children", "15 sheep".

Counting Numbers

Historically, numbers were first used to count things (sheep, children, etc).

$$
1,2,3,4,5, \ldots
$$

Eg. "3 children", "15 sheep".
What if you have no children or lose all your sheep?

Counting Numbers

Historically, numbers were first used to count things (sheep, children, etc).

$$
1,2,3,4,5, \ldots
$$

Eg. "3 children", "15 sheep".
What if you have no children or lose all your sheep?
Then we need a new number, zero, which we write as 0 .

Types of Numbers

Like many things, there is a classification system for groups (or sets) of numbers.

Types of Numbers

Like many things, there is a classification system for groups (or sets) of numbers.
The set of numbers we use depends on the context of the problem.

Types of Numbers

Like many things, there is a classification system for groups (or sets) of numbers.
The set of numbers we use depends on the context of the problem.
The Counting Numbers: $\{1,2,3,4,5, \ldots\}$

Types of Numbers

Like many things, there is a classification system for groups (or sets) of numbers.
The set of numbers we use depends on the context of the problem.
The Counting Numbers: $\{1,2,3,4,5, \ldots\}$
The Whole Numbers: $\{0,1,2,3,4,5, \ldots\}$

Negative Numbers

If your bank statement says account balance $=-\$ 50$ then this means you owe the bank $\$ 50$.

Negative Numbers

If your bank statement says account balance $=-\$ 50$ then this means you owe the bank $\$ 50$.

So, negative numbers can be used to represent debt. (Banks use negative numbers quite a lot!)

Negative Numbers

If your bank statement says account balance $=-\$ 50$ then this means you owe the bank $\$ 50$.

So, negative numbers can be used to represent debt. (Banks use negative numbers quite a lot!)

In Physics, a negative number means a quantity acting in the opposite direction. For example:

Negative Numbers

If your bank statement says account balance $=-\$ 50$ then this means you owe the bank $\$ 50$.

So, negative numbers can be used to represent debt. (Banks use negative numbers quite a lot!)

In Physics, a negative number means a quantity acting in the opposite direction.
For example:

Negative Numbers

If your bank statement says account balance $=-\$ 50$ then this means you owe the bank $\$ 50$.

So, negative numbers can be used to represent debt. (Banks use negative numbers quite a lot!)

In Physics, a negative number means a quantity acting in the opposite direction. For example:

Negative Numbers

If your bank statement says account balance $=-\$ 50$ then this means you owe the bank $\$ 50$.

So, negative numbers can be used to represent debt. (Banks use negative numbers quite a lot!)

In Physics, a negative number means a quantity acting in the opposite direction. For example:

"3m North"

Negative Numbers

If your bank statement says account balance $=-\$ 50$ then this means you owe the bank $\$ 50$.

So, negative numbers can be used to represent debt. (Banks use negative numbers quite a lot!)

In Physics, a negative number means a quantity acting in the opposite direction. For example:

" $3 m$ North"

" $-3 m$ North"

Negative Numbers

If your bank statement says account balance $=-\$ 50$ then this means you owe the bank $\$ 50$.

So, negative numbers can be used to represent debt. (Banks use negative numbers quite a lot!)

In Physics, a negative number means a quantity acting in the opposite direction. For example:

" $3 m$ North"

" $-3 m$ North" or " $3 m$ South"

Negative Numbers

If your bank statement says account balance $=-\$ 50$ then this means you owe the bank $\$ 50$.

So, negative numbers can be used to represent debt. (Banks use negative numbers quite a lot!)

In Physics, a negative number means a quantity acting in the opposite direction. For example:

" $3 m$ North"

" $-3 m$ North" or " $3 m$ South"

So, negative numbers can be used to represent direction.

Negative Numbers

Take the set of whole numbers and include the negative of each number. This new set is the set of integers.

Negative Numbers

Take the set of whole numbers and include the negative of each number. This new set is the set of integers.

The Integers: $\{\ldots,-2,-1,0,1,2, \ldots\}$

Negative Numbers

Take the set of whole numbers and include the negative of each number. This new set is the set of integers.

The Integers: $\{\ldots,-2,-1,0,1,2, \ldots\}$
This set continues indefinitely in both directions.

The Number Line

Integers sit nicely on the number line.

The Number Line

Integers sit nicely on the number line.

There are also numbers between the integers.

The Number Line

Integers sit nicely on the number line.

There are also numbers between the integers.
For example, the number "one-half", which we write " $\frac{1}{2}$ ", is exactly halfway between 0 and 1 .

The Number Line

Integers sit nicely on the number line.

There are also numbers between the integers.
For example, the number "one-half", which we write " $\frac{1}{2}$ ", is exactly halfway between 0 and 1 .

The Number Line

Integers sit nicely on the number line.

There are also numbers between the integers.
For example, the number "one-half", which we write " $\frac{1}{2}$ ", is exactly halfway between 0 and 1.

When the numerator (top line) is smaller than the denominator (bottom line) we call this a proper fraction.

Fractions

The number "four and two-fifths" is written " $4 \frac{2}{5}$ " and sits between 4 and 5 .

Fractions

The number "four and two-fifths" is written " $4 \frac{2}{5}$ " and sits between 4 and 5 .

Fractions

The number "four and two-fifths" is written " $4 \frac{2}{5}$ " and sits between 4 and 5 .

To pinpoint this number, imagine splitting up the interval between 4 and 5 into fifths (five equal pieces).

Fractions

The number "four and two-fifths" is written " $4 \frac{2}{5}$ " and sits between 4 and 5 .

To pinpoint this number, imagine splitting up the interval between 4 and 5 into fifths (five equal pieces).

Fractions

The number "four and two-fifths" is written " $4 \frac{2}{5}$ " and sits between 4 and 5 .

To pinpoint this number, imagine splitting up the interval between 4 and 5 into fifths (five equal pieces).

Now, starting at 4, move right along two of these fifths.

Fractions

The number "four and two-fifths" is written " $4 \frac{2}{5}$ " and sits between 4 and 5 .

To pinpoint this number, imagine splitting up the interval between 4 and 5 into fifths (five equal pieces).

Now, starting at 4, move right along two of these fifths.

Fractions

The number "four and two-fifths" is written " $4 \frac{2}{5}$ " and sits between 4 and 5 .

To pinpoint this number, imagine splitting up the interval between 4 and 5 into fifths (five equal pieces).

Now, starting at 4, move right along two of these fifths.

We call $4 \frac{2}{5}$ a mixed numeral, as it is the sum of an integer and a proper fraction.

Fractions

Here are some more examples of mixed numerals.

Fractions

Here are some more examples of mixed numerals.

Fractions

Here are some more examples of mixed numerals.

Fractions

Here are some more examples of mixed numerals.

Converting Mixed Numerals to Improper Fractions

Convert the mixed numeral $2 \frac{1}{2}$ to an improper fraction (numerator larger than denominator).

Converting Mixed Numerals to Improper Fractions

Convert the mixed numeral $2 \frac{1}{2}$ to an improper fraction (numerator larger than denominator).

So we have two wholes and one half:

Converting Mixed Numerals to Improper Fractions

Convert the mixed numeral $2 \frac{1}{2}$ to an improper fraction (numerator larger than denominator).

So we have two wholes and one half:

Converting Mixed Numerals to Improper Fractions

Convert the mixed numeral $2 \frac{1}{2}$ to an improper fraction (numerator larger than denominator).

So we have two wholes and one half:

or two lots of two halves (making four) plus one half is five halves:

Converting Mixed Numerals to Improper Fractions

Convert the mixed numeral $2 \frac{1}{2}$ to an improper fraction (numerator larger than denominator).

So we have two wholes and one half:

or two lots of two halves (making four) plus one half is five halves:

$2 \frac{1}{2}=\frac{5}{2}$

Converting Mixed Numerals to Improper Fractions

$$
4 \frac{1}{3}=
$$

Converting Mixed Numerals to Improper Fractions

$$
4 \frac{1}{3}=\frac{13}{3}
$$

Converting Mixed Numerals to Improper Fractions

$$
\begin{gathered}
4 \frac{1}{3}=\frac{13}{3} \\
2 \frac{1}{4}=
\end{gathered}
$$

Converting Mixed Numerals to Improper Fractions

$$
\begin{aligned}
& 4 \frac{1}{3}=\frac{13}{3} \\
& 2 \frac{1}{4}=\frac{9}{4}
\end{aligned}
$$

Converting Mixed Numerals to Improper Fractions

$$
\begin{aligned}
& 4 \frac{1}{3}=\frac{13}{3} \\
& 2 \frac{1}{4}=\frac{9}{4} \\
& 1 \frac{1}{6}=
\end{aligned}
$$

Converting Mixed Numerals to Improper Fractions

$$
\begin{aligned}
& 4 \frac{1}{3}=\frac{13}{3} \\
& 2 \frac{1}{4}=\frac{9}{4} \\
& 1 \frac{1}{6}=\frac{7}{6}
\end{aligned}
$$

Converting Mixed Numerals to Improper Fractions

$$
\begin{aligned}
& 4 \frac{1}{3}=\frac{13}{3} \\
& 2 \frac{1}{4}=\frac{9}{4} \\
& 1 \frac{1}{6}=\frac{7}{6} \\
& 10 \frac{1}{5}=
\end{aligned}
$$

Converting Mixed Numerals to Improper Fractions

$$
\begin{aligned}
& 4 \frac{1}{3}=\frac{13}{3} \\
& 2 \frac{1}{4}=\frac{9}{4} \\
& 1 \frac{1}{6}=\frac{7}{6} \\
& 10 \frac{1}{5}=\frac{51}{5}
\end{aligned}
$$

More Types of Numbers

Any number which can be written as one integer divided by another integer (aside from 0) is called a rational number:

More Types of Numbers

Any number which can be written as one integer divided by another integer (aside from 0) is called a rational number:
$\frac{1}{2}$

More Types of Numbers

Any number which can be written as one integer divided by another integer (aside from 0) is called a rational number:

$$
\frac{1}{2} \quad \frac{-13}{3}
$$

More Types of Numbers

Any number which can be written as one integer divided by another integer (aside from 0) is called a rational number:

$$
\frac{1}{2} \quad \frac{-13}{3} \quad \frac{1}{1,000,000,000}
$$

More Types of Numbers

Any number which can be written as one integer divided by another integer (aside from 0) is called a rational number:

$$
\frac{1}{2} \quad \frac{-13}{3} \quad \frac{1}{1,000,000,000}
$$

Are integers themselves rational numbers?

More Types of Numbers

Any number which can be written as one integer divided by another integer (aside from 0) is called a rational number:

$$
\frac{1}{2} \quad \frac{-13}{3} \quad \frac{1}{1,000,000,000}
$$

Are integers themselves rational numbers?

Yes: 8

More Types of Numbers

Any number which can be written as one integer divided by another integer (aside from 0) is called a rational number:

$$
\frac{1}{2} \quad \frac{-13}{3} \quad \frac{1}{1,000,000,000}
$$

Are integers themselves rational numbers?

$$
\text { Yes: } 8=\frac{8}{1}
$$

More Types of Numbers

Any number which can be written as one integer divided by another integer (aside from 0) is called a rational number:

$$
\frac{1}{2} \quad \frac{-13}{3} \quad \frac{1}{1,000,000,000}
$$

Are integers themselves rational numbers?

$$
\text { Yes: } 8=\frac{8}{1}=\frac{\text { integer }}{\text { integer }}
$$

More Types of Numbers

Any number which cannot be written as one integer divided by another integer is called an irrational number.

More Types of Numbers

Any number which cannot be written as one integer divided by another integer is called an irrational number.

Irrational numbers can be identified from their decimal form because their decimal places do not terminate or form a recurring pattern.

More Types of Numbers

Any number which cannot be written as one integer divided by another integer is called an irrational number.

Irrational numbers can be identified from their decimal form because their decimal places do not terminate or form a recurring pattern.

A well known irrational number is $\pi=3.1415 \ldots$.

More Types of Numbers

Any number which cannot be written as one integer divided by another integer is called an irrational number.

Irrational numbers can be identified from their decimal form because their decimal places do not terminate or form a recurring pattern.

A well known irrational number is $\pi=3.1415 \ldots$
Another irrational number is $\sqrt{2}=1.4142 \ldots$.

More Types of Numbers

Any number which cannot be written as one integer divided by another integer is called an irrational number.

Irrational numbers can be identified from their decimal form because their decimal places do not terminate or form a recurring pattern.

A well known irrational number is $\pi=3.1415 \ldots$.
Another irrational number is $\sqrt{2}=1.4142 \ldots$.
The combination of all rational and irrational numbers is the set of real numbers.

More Types of Numbers

Real numbers can all be placed on a number line:

More Types of Numbers

Real numbers can all be placed on a number line:

More Types of Numbers

Real numbers can all be placed on a number line:

More Types of Numbers

Real numbers can all be placed on a number line:

Types of Numbers

Counting Numbers: $\{1,2,3,4,5, \ldots\}$

Types of Numbers

Counting Numbers: $\{1,2,3,4,5, \ldots\}$
Whole Numbers: $\{0,1,2,3,4,5, \ldots\}$

Types of Numbers

Counting Numbers: $\{1,2,3,4,5, \ldots\}$
Whole Numbers: $\{0,1,2,3,4,5, \ldots\}$
Integers: $\{\ldots,-2,-1,0,1,2, \ldots\}$

Types of Numbers

Counting Numbers: $\{1,2,3,4,5, \ldots\}$
Whole Numbers: $\{0,1,2,3,4,5, \ldots\}$
Integers: $\{\ldots,-2,-1,0,1,2, \ldots\}$
Rational Numbers: $\left\{\frac{\text { integer }}{\text { integer }}\right\}$,

Types of Numbers

Counting Numbers: $\{1,2,3,4,5, \ldots\}$
Whole Numbers: $\{0,1,2,3,4,5, \ldots\}$
Integers: $\{\ldots,-2,-1,0,1,2, \ldots\}$
Rational Numbers: $\left\{\frac{\text { integer }}{\text { integer }}\right\}$, Irrational Numbers

Types of Numbers

Counting Numbers: $\{1,2,3,4,5, \ldots\}$
Whole Numbers: $\{0,1,2,3,4,5, \ldots\}$
Integers: $\{\ldots,-2,-1,0,1,2, \ldots\}$
Rational Numbers: $\left\{\frac{\text { integer }}{\text { integer }}\right\}$, Irrational Numbers
Real Numbers: \{Rational Numbers, Irrational Numbers\}

Operations

Operation: A way to combine numbers and get a new number.

Operations

Operation: A way to combine numbers and get a new number.

Addition is an operation.

Operations

Operation: A way to combine numbers and get a new number.

Addition is an operation.

Examples:

$$
3+2=5
$$

Operations

Operation: A way to combine numbers and get a new number.

Addition is an operation.

Examples:

$$
\begin{aligned}
& 3+2=5 \\
& 2+3=5
\end{aligned}
$$

Operations

Operation: A way to combine numbers and get a new number.

Addition is an operation.

Examples:

$$
\begin{aligned}
& 3+2=5 \\
& 2+3=5
\end{aligned}
$$

Addition is a commutative operation because the order does not matter.

Addition is Commutative

Addition is commutative.

Addition is Commutative

Addition is commutative.
Multiplication is

Addition is Commutative

Addition is commutative.
Multiplication is commutative.

Addition is Commutative

Addition is commutative.
Multiplication is commutative. Subtraction is

Addition is Commutative

> Addition is commutative.
> Multiplication is commutative. Subtraction is not commutative.

Addition is Commutative

Addition is commutative.
Multiplication is commutative. Subtraction is not commutative.
Division is

Addition is Commutative

Addition is commutative.
Multiplication is commutative.
Subtraction is not commutative.
Division is not commutative.

Addition is Commutative

> Addition is commutative.
> Multiplication is commutative.
> Subtraction is not commutative.
> Division is not commutative.

$$
\begin{aligned}
& 4+9=13 \\
& 9+4=13
\end{aligned}
$$

Addition is Commutative

Addition is commutative.
Multiplication is commutative.
Subtraction is not commutative.
Division is not commutative.

| $4+9=13$ | $3 \times 6=18$ |
| :--- | :--- | :--- |
| $9+4=13$ | $6 \times 3=18$ |

Addition is Commutative

Addition is commutative.
Multiplication is commutative.
Subtraction is not commutative.
Division is not commutative.

$4+9$	$=13$	3×6	$=18$	$8-6$	$=$
9	$=13$	6×3	$=18$	$6-8$	$=$
$9+4$					

Addition is Commutative

Addition is commutative.
Multiplication is commutative.
Subtraction is not commutative.
Division is not commutative.

Identities

$$
\text { Adding } 0 \text { to a number leaves it unchanged. }
$$

Identities

$$
\text { Adding } 0 \text { to a number leaves it unchanged. }
$$

Subtracting a number from itself gives 0 .

Identities

$$
\text { Adding } 0 \text { to a number leaves it unchanged. }
$$

Subtracting a number from itself gives 0 .

0 is the identity for addition.

Identities

$$
\text { Adding } 0 \text { to a number leaves it unchanged. }
$$

Subtracting a number from itself gives 0 .

0 is the identity for addition.

Multiplying a number by ? leaves it unchanged.

Identities

$$
\text { Adding } 0 \text { to a number leaves it unchanged. }
$$

Subtracting a number from itself gives 0 .

0 is the identity for addition.

Multiplying a number by 1 leaves it unchanged.

Identities

$$
\text { Adding } 0 \text { to a number leaves it unchanged. }
$$

Subtracting a number from itself gives 0 .

0 is the identity for addition.

Multiplying a number by 1 leaves it unchanged.

1 is the identity for multiplication.

Rules of Division

You can not divide by zero.

Rules of Division

> You can not divide by zero.

$$
10 \div 0 \text { is "undefined" }
$$

Rules of Division

> You can not divide by zero.

$$
10 \div 0 \text { is "undefined" }
$$

Zero divided by anything (except zero) is zero.

Rules of Division

> You can not divide by zero.

$$
10 \div 0 \text { is "undefined" }
$$

Zero divided by anything (except zero) is zero.

$$
0 \div 2=
$$

Rules of Division

> You can not divide by zero.

$$
10 \div 0 \text { is "undefined" }
$$

Zero divided by anything (except zero) is zero.

$$
0 \div 2=0
$$

Rules of Division

You can not divide by zero.

$$
10 \div 0 \text { is "undefined" }
$$

Zero divided by anything (except zero) is zero.

$$
\begin{aligned}
& 0 \div 2=0 \\
& 0 \div 10=
\end{aligned}
$$

Rules of Division

You can not divide by zero.

$$
10 \div 0 \text { is "undefined" }
$$

Zero divided by anything (except zero) is zero.

$$
\begin{aligned}
& 0 \div 2=0 \\
& 0 \div 10=0
\end{aligned}
$$

Rules of Division

You can not divide by zero.

$$
10 \div 0 \text { is "undefined" }
$$

Zero divided by anything (except zero) is zero.

$$
\begin{aligned}
& 0 \div 2=0 \\
& 0 \div 10=0 \\
& 0 \div 0
\end{aligned}
$$

Rules of Division

You can not divide by zero.

$$
10 \div 0 \text { is "undefined" }
$$

Zero divided by anything (except zero) is zero.

$$
\begin{aligned}
& 0 \div 2=0 \\
& 0 \div 10=0 \\
& 0 \div 0=
\end{aligned}
$$

Rules for Multiplying Negatives

negative \times negative $=$ positive

Rules for Multiplying Negatives

$$
\text { negative } \times \text { negative }=\text { positive }
$$

$$
\text { negative } \times \text { positive }=\text { negative }
$$

Rules for Multiplying Negatives

$$
\text { negative } \times \text { negative }=\text { positive }
$$

$$
\text { negative } \times \text { positive }=\text { negative }
$$

$$
-3 \times-2=
$$

Rules for Multiplying Negatives

$$
\text { negative } \times \text { negative }=\text { positive }
$$

$$
\text { negative } \times \text { positive }=\text { negative }
$$

$$
-3 \times-2=6
$$

Rules for Multiplying Negatives

$$
\text { negative } \times \text { negative }=\text { positive }
$$

$$
\text { negative } \times \text { positive }=\text { negative }
$$

$$
\begin{aligned}
& -3 \times-2=6 \\
& -4 \times-1=
\end{aligned}
$$

Rules for Multiplying Negatives

$$
\text { negative } \times \text { negative }=\text { positive }
$$

$$
\text { negative } \times \text { positive }=\text { negative }
$$

$$
\begin{aligned}
& -3 \times-2=6 \\
& -4 \times-1=4
\end{aligned}
$$

Rules for Multiplying Negatives

$$
\text { negative } \times \text { negative }=\text { positive }
$$

$$
\text { negative } \times \text { positive }=\text { negative }
$$

$$
\begin{array}{cc}
-3 \times-2= & 6 \\
-4 \times-1= & 4 \\
6 \times-3= &
\end{array}
$$

Rules for Multiplying Negatives

$$
\text { negative } \times \text { negative }=\text { positive }
$$

$$
\text { negative } \times \text { positive }=\text { negative }
$$

$$
\begin{array}{lr}
-3 \times-2= & 6 \\
-4 \times-1= & 4 \\
6 \times-3= & -18
\end{array}
$$

Rules for Multiplying Negatives

$$
\text { negative } \times \text { negative }=\text { positive }
$$

$$
\text { negative } \times \text { positive }=\text { negative }
$$

$$
\begin{array}{lr}
-3 \times-2= & 6 \\
-4 \times-1= & 4 \\
6 \times-3= & -18 \\
-2 \times 4= &
\end{array}
$$

Rules for Multiplying Negatives

$$
\text { negative } \times \text { negative }=\text { positive }
$$

$$
\text { negative } \times \text { positive }=\text { negative }
$$

$$
\begin{array}{lr}
-3 \times-2= & 6 \\
-4 \times-1= & 4 \\
6 \times-3= & -18 \\
-2 \times 4= & -8
\end{array}
$$

Rules for Dividing Negatives

negative \div negative $=$ positive

Rules for Dividing Negatives

negative \div negative $=$ positive
negative \div positive $=$ negative

Rules for Dividing Negatives

negative \div negative $=$ positive
negative \div positive $=$ negative
positive \div negative $=$ negative

Rules for Dividing Negatives

$$
\text { negative } \div \text { negative }=\text { positive }
$$

negative \div positive $=$ negative
positive \div negative $=$ negative

$$
-10 \div-2=
$$

Rules for Dividing Negatives

$$
\text { negative } \div \text { negative }=\text { positive }
$$

negative \div positive $=$ negative
positive \div negative $=$ negative

$$
-10 \div-2=5
$$

Rules for Dividing Negatives

$$
\text { negative } \div \text { negative }=\text { positive }
$$

negative \div positive $=$ negative

$$
\text { positive } \div \text { negative }=\text { negative }
$$

$$
\begin{gathered}
-10 \div-2=5 \\
16 \div-2=
\end{gathered}
$$

Rules for Dividing Negatives

$$
\text { negative } \div \text { negative }=\text { positive }
$$

negative \div positive $=$ negative

$$
\text { positive } \div \text { negative }=\text { negative }
$$

$$
\begin{aligned}
& -10 \div-2=5 \\
& 16 \div-2=-8
\end{aligned}
$$

Rules for Dividing Negatives

$$
\text { negative } \div \text { negative }=\text { positive }
$$

negative \div positive $=$ negative
positive \div negative $=$ negative

$$
\begin{aligned}
& -10 \div-2=5 \\
& 16 \div-2=-8 \\
& -20 \div 4=
\end{aligned}
$$

Rules for Dividing Negatives

$$
\text { negative } \div \text { negative }=\text { positive }
$$

negative \div positive $=$ negative
positive \div negative $=$ negative

$$
\begin{array}{r}
-10 \div-2=5 \\
16 \div-2=-8 \\
-20 \div 4=-5
\end{array}
$$

Indices (Powers)

Indices provide a short way of representing repeated multiplication of a fixed number.

Indices (Powers)

Indices provide a short way of representing repeated multiplication of a fixed number.

Instead of writing 5×5 we may write 5^{2}, and we say "five squared".

Indices (Powers)

Indices provide a short way of representing repeated multiplication of a fixed number.

Instead of writing 5×5 we may write 5^{2}, and we say "five squared". Instead of writing $9 \times 9 \times 9$ we may write 9^{3}, and we say "nine cubed".

Indices (Powers)

Indices provide a short way of representing repeated multiplication of a fixed number.

Instead of writing 5×5 we may write 5^{2}, and we say "five squared".
Instead of writing $9 \times 9 \times 9$ we may write 9^{3}, and we say "nine cubed".
Instead of writing $3 \times 3 \times 3 \times 3$ we may write 3^{4}, and we say "three to the power of four".

Indices (Powers)

So when we see 3^{4}, this really means $3 \times 3 \times 3 \times 3$, which really means 81 .

Indices (Powers)

So when we see 3^{4}, this really means $3 \times 3 \times 3 \times 3$, which really means 81 .
When we see $(-2)^{2}$, this really means

Indices (Powers)

So when we see 3^{4}, this really means $3 \times 3 \times 3 \times 3$, which really means 81 .
When we see $(-2)^{2}$, this really means -2×-2 which equals positive 4 .

Indices (Powers)

So when we see 3^{4}, this really means $3 \times 3 \times 3 \times 3$, which really means 81 .
When we see $(-2)^{2}$, this really means -2×-2 which equals positive 4 .

$$
\text { negative }^{2}=\text { positive }
$$

Indices (Powers)

When we see $(-3)^{3}$ we know that this means

Indices (Powers)

When we see $(-3)^{3}$ we know that this means $-3 \times-3 \times-3$. So

$$
=\underbrace{-3 \times-3}_{9} \quad \begin{aligned}
& \times-3 \\
& \times-3
\end{aligned}
$$

Indices (Powers)

When we see $(-3)^{3}$ we know that this means $-3 \times-3 \times-3$. So

Indices (Powers)

When we see $(-3)^{3}$ we know that this means $-3 \times-3 \times-3$. So

$$
\begin{aligned}
& =\underbrace{-3 \times-3}_{9} \times-3 \\
& =\quad-27
\end{aligned}
$$

negative ${ }^{3}=$ negative

Indices (Powers)

There is a pattern here.
negative $^{\text {even }}=$

Indices (Powers)

There is a pattern here.

$$
\text { negative }{ }^{\text {even }}=\text { positive }
$$

Indices (Powers)

There is a pattern here.

$$
\text { negative }{ }^{\text {even }}=\text { positive }
$$

negative ${ }^{\text {odd }}=$

Indices (Powers)

There is a pattern here.

$$
\text { negative }{ }^{\text {even }}=\text { positive }
$$

$$
\text { negative }^{\text {odd }}=\text { negative }
$$

Calculating with the Number Line

Use the number line to find $1-3+5$.

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1 ,

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1 , then move 3 left,

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1 , then move 3 left,

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1 , then move 3 left,

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1 , then move 3 left,

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1 , then move 3 left, then 5 right.

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1 , then move 3 left, then 5 right.

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1 , then move 3 left, then 5 right.

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1 , then move 3 left, then 5 right.

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1 , then move 3 left, then 5 right.

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1 , then move 3 left, then 5 right.

Calculating with the Number Line

Use the number line to find $1-3+5$.

We start at 1, then move 3 left, then 5 right.

The answer is 3 .

Rule for Subtracting Negatives

$$
\text { number }- \text { number }=\text { number }+ \text { number }
$$

Rule for Subtracting Negatives

$$
\text { number }-- \text { number }=\text { number }+ \text { number }
$$

$$
5-(-3) \quad 6--4 \quad-2-(-3)
$$

Rule for Subtracting Negatives

$$
\text { number }- \text { number }=\text { number }+ \text { number }
$$

$$
\begin{array}{rlr}
& 5-(-3) & 6--4 \\
= & 5+3 &
\end{array}
$$

Rule for Subtracting Negatives

$$
\text { number }- \text { number }=\text { number }+ \text { number }
$$

$$
\begin{aligned}
& 5-(-3) \\
= & 5+3
\end{aligned}=\begin{aligned}
& 6-4 \\
& 6+4
\end{aligned}
$$

$$
-2-(-3)
$$

Rule for Subtracting Negatives

$$
\text { number }- \text { number }=\text { number }+ \text { number }
$$

$$
\begin{aligned}
& 5-(-3) \\
= & 5+3
\end{aligned}=\begin{aligned}
& 6--4 \\
& 6+4
\end{aligned}=\begin{aligned}
& -2-(-3) \\
& -2+3
\end{aligned}
$$

Rule for Subtracting Negatives

$$
\text { number }- \text { number }=\text { number }+ \text { number }
$$

$$
\begin{array}{rllll}
& 5-(-3) & & 6--4 \\
= & 5+3 & = & 6+4 \\
= & 8 & = & = & -2-(-3) \\
-2+3
\end{array}
$$

Combined Calculations

What if we are asked to calculate $4 \times 3+8 \div 2-3 \times 1$?

Combined Calculations

What if we are asked to calculate $4 \times 3+8 \div 2-3 \times 1$?
When we have a mix of operations, the order is very important.

Combined Calculations

What if we are asked to calculate $4 \times 3+8 \div 2-3 \times 1$?
When we have a mix of operations, the order is very important.
The rule we follows is BIMDAS:
Brackets, Indices, Multiplication/Division, Addition/Subtraction.

Combined Calculations

What if we are asked to calculate $4 \times 3+8 \div 2-3 \times 1$?
When we have a mix of operations, the order is very important.
The rule we follows is BIMDAS:
Brackets, Indices, Multiplication/Division, Addition/Subtraction.

We do the calculation step by step in this order.

Combined Calculations: Example

Use BIMDAS to calculate: $4 \times 3+8 \div 2-3 \times 1$

Combined Calculations: Example

Use BIMDAS to calculate: $4 \times 3+8 \div 2-3 \times 1$
\rightarrow There are no brackets here, so we can ignore B.

Combined Calculations: Example

Use BIMDAS to calculate: $4 \times 3+8 \div 2-3 \times 1$
\rightarrow There are no brackets here, so we can ignore B .
\rightarrow There are no indices either, so we can ignore I.

Combined Calculations: Example

Use BIMDAS to calculate: $4 \times 3+8 \div 2-3 \times 1$
\rightarrow There are no brackets here, so we can ignore B.
\rightarrow There are no indices either, so we can ignore I.
$\rightarrow M / D$ is next, and we can see there are three of these:

Combined Calculations: Example

Use BIMDAS to calculate: $4 \times 3+8 \div 2-3 \times 1$
\rightarrow There are no brackets here, so we can ignore B.
\rightarrow There are no indices either, so we can ignore I.
$\rightarrow M / D$ is next, and we can see there are three of these:

$$
\underbrace{4 \times 3}+\underbrace{8 \div 2}-\underbrace{3 \times 1}
$$

Combined Calculations: Example

Use BIMDAS to calculate: $4 \times 3+8 \div 2-3 \times 1$
\rightarrow There are no brackets here, so we can ignore B.
\rightarrow There are no indices either, so we can ignore I.
$\rightarrow M / D$ is next, and we can see there are three of these:

$$
=\underbrace{4 \times 3}_{12}+\underbrace{8 \div 2}_{4}-\underbrace{3 \times 1}_{3}
$$

Combined Calculations: Example

Use BIMDAS to calculate: $4 \times 3+8 \div 2-3 \times 1$

\rightarrow There are no brackets here, so we can ignore B.
\rightarrow There are no indices either, so we can ignore I.
$\rightarrow M / D$ is next, and we can see there are three of these:

$$
=\underbrace{4 \times 3}_{12}+\underbrace{8 \div 2}_{4}-\underbrace{3 \times 1}_{3}
$$

\rightarrow Now when we get to A / S, just do it the way we did with our number line.

Combined Calculations: Example

Use BIMDAS to calculate: $4 \times 3+8 \div 2-3 \times 1$

\rightarrow There are no brackets here, so we can ignore B.
\rightarrow There are no indices either, so we can ignore I.
$\rightarrow M / D$ is next, and we can see there are three of these:

$$
=\underbrace{4 \times 3}_{12}+\underbrace{8 \div 2}_{4}-\underbrace{3 \times 1}_{3}
$$

\rightarrow Now when we get to A / S, just do it the way we did with our number line.

The answer is 13 .

Combined Calculations: Example

Use BIMDAS to calculate: $3^{2} \times-2+(6-8 \div 2)-3 \times(1-3)$
This looks fairly horrible. We use the step by step process of BIMDAS.

Combined Calculations: Example

Use BIMDAS to calculate: $3^{2} \times-2+(6-8 \div 2)-3 \times(1-3)$
This looks fairly horrible. We use the step by step process of BIMDAS.
$\rightarrow \mathrm{B}$ (brackets) is first.

$$
3^{2} \times-2+(\underbrace{6-8 \div 2})-3 \times(\underbrace{1-3})
$$

Combined Calculations: Example

$$
\text { Use BIMDAS to calculate: } 3^{2} \times-2+(6-8 \div 2)-3 \times(1-3)
$$

This looks fairly horrible. We use the step by step process of BIMDAS.
$\rightarrow B$ (brackets) is first. The first bracket requires BIMDAS to be applied to it, by first dividing and then subtracting.

$$
3^{2} \times-2+(\underbrace{6-8 \div 2})-3 \times(\underbrace{1-3})
$$

Combined Calculations: Example

$$
\text { Use BIMDAS to calculate: } 3^{2} \times-2+(6-8 \div 2)-3 \times(1-3)
$$

This looks fairly horrible. We use the step by step process of BIMDAS.
$\rightarrow B$ (brackets) is first. The first bracket requires BIMDAS to be applied to it, by first dividing and then subtracting.

$$
3^{2} \times-2+(6-\underbrace{8 \div 2})-3 \times(\underbrace{1-3})
$$

Combined Calculations: Example

$$
\text { Use BIMDAS to calculate: } 3^{2} \times-2+(6-8 \div 2)-3 \times(1-3)
$$

This looks fairly horrible. We use the step by step process of BIMDAS.
$\rightarrow B$ (brackets) is first. The first bracket requires BIMDAS to be applied to it, by first dividing and then subtracting.

$$
\begin{aligned}
& 3^{2} \times-2+(6-\underbrace{8 \div 2})-3 \times(\underbrace{1-3}_{(-2)}) \\
= & 3^{2} \times-2+(6-4)-3 \times\left(\begin{array}{l}
-2
\end{array}\right)
\end{aligned}
$$

Combined Calculations: Example

$$
\text { Use BIMDAS to calculate: } 3^{2} \times-2+(6-8 \div 2)-3 \times(1-3)
$$

This looks fairly horrible. We use the step by step process of BIMDAS.
$\rightarrow B$ (brackets) is first. The first bracket requires BIMDAS to be applied to it, by first dividing and then subtracting.

$$
\begin{aligned}
& 3^{2} \times-2+(6-\underbrace{8 \div 2})-3 \times(\underbrace{1-3}) \\
= & 3^{2} \times-2+(6-4)-3 \times(-2) \\
= & 3^{2} \times-2+(2) \quad-3 \times(-2)
\end{aligned}
$$

Combined Calculations: Example

Use BIMDAS to calculate: $3^{2} \times-2+(6-8 \div 2)-3 \times(1-3)$
This looks fairly horrible. We use the step by step process of BIMDAS.
$\rightarrow B$ (brackets) is first. The first bracket requires BIMDAS to be applied to it, by first dividing and then subtracting.

$$
\begin{aligned}
& 3^{2} \times-2+(6-\underbrace{8 \div 2})-3 \times(\underbrace{1-3}) \\
&= 3^{2} \times-2+(6-4)-3 \times(-2) \\
&= 3^{2} \times-2+(2) \\
&-3 \times(-2)
\end{aligned}
$$

We can now drop the brackets:

$$
3^{2} \times-2+2-3 \times-2
$$

Combined Calculations: Example

$$
3^{2} \times-2+2-3 \times-2
$$

Combined Calculations: Example

$$
3^{2} \times-2+2-3 \times-2
$$

\rightarrow I (Indices) is next.

$$
3^{2} \times-2+2-3 \times-2
$$

Combined Calculations: Example

$$
3^{2} \times-2+2-3 \times-2
$$

\rightarrow I (Indices) is next.

$$
\begin{aligned}
& 3^{2} \times-2+2-3 \times-2 \\
= & 9 \times-2+2-3 \times-2
\end{aligned}
$$

Combined Calculations: Example

$$
3^{2} \times-2+2-3 \times-2
$$

\rightarrow I (Indices) is next.

$$
\begin{aligned}
& 3^{2} \times-2+2-3 \times-2 \\
= & 9 \times-2+2-3 \times-2
\end{aligned}
$$

$\rightarrow \mathrm{D} / \mathrm{M}$ are next.

$$
\underbrace{9 \times-2}+2-\underbrace{3 \times-2}
$$

Combined Calculations: Example

$$
3^{2} \times-2+2-3 \times-2
$$

\rightarrow I (Indices) is next.

$$
\begin{aligned}
& 3^{2} \times-2+2-3 \times-2 \\
= & 9 \times-2+2-3 \times-2
\end{aligned}
$$

$\rightarrow \mathrm{D} / \mathrm{M}$ are next.

$$
=\underbrace{9 \times-2}_{-18}+2-\underbrace{3 \times-2}_{-6}
$$

Combined Calculations: Example

$$
3^{2} \times-2+2-3 \times-2
$$

\rightarrow I (Indices) is next.

$$
\begin{array}{r}
3^{2} \times-2+2-3 \times-2 \\
= \\
9 \times-2+2-3 \times-2
\end{array}
$$

$\rightarrow \mathrm{D} / \mathrm{M}$ are next.

$$
=\underbrace{9 \times-2}_{-18}+2-\underbrace{3 \times-2}_{-6}
$$

$\rightarrow \mathrm{A} / \mathrm{S}$ are last.
The answer is -10

Fractions with Negatives

Negatives in fractions are free to move around as follows

$$
\frac{-10}{2}=\frac{10}{-2}=-\frac{10}{2}
$$

Fractions with Negatives

Negatives in fractions are free to move around as follows

$$
\frac{-10}{2}=\frac{10}{-2}=-\frac{10}{2}
$$

Remember that fraction bars represent division so, if both the numerator and denominator are negative, the result is positive:

$$
\frac{-10}{-2}=\frac{10}{2}
$$

Multiplying Fractions

Multiplying fractions is as easy as multiplying integers. We just multiply the numerators together, and multiply the denominators together as follows:

$$
\frac{2}{5} \times \frac{3}{2}=\frac{6}{10}
$$

Multiplying Fractions

Multiplying fractions is as easy as multiplying integers. We just multiply the numerators together, and multiply the denominators together as follows:

$$
\begin{aligned}
& \frac{2}{5} \times \frac{3}{2}=\frac{6}{10} \\
& \frac{2}{7} \times \frac{-1}{8}=
\end{aligned}
$$

Multiplying Fractions

Multiplying fractions is as easy as multiplying integers. We just multiply the numerators together, and multiply the denominators together as follows:

$$
\begin{aligned}
& \frac{2}{5} \times \frac{3}{2}=\frac{6}{10} \\
& \frac{2}{7} \times \frac{-1}{8}=\frac{-2}{56}
\end{aligned}
$$

Multiplying Fractions

Multiplying fractions is as easy as multiplying integers. We just multiply the numerators together, and multiply the denominators together as follows:

$$
\begin{array}{r}
\frac{2}{5} \times \frac{3}{2}=\frac{6}{10} \\
\frac{2}{7} \times \frac{-1}{8}=\frac{-2}{56} \\
\frac{-3}{7} \times \frac{2}{-5}=
\end{array}
$$

Multiplying Fractions

Multiplying fractions is as easy as multiplying integers. We just multiply the numerators together, and multiply the denominators together as follows:

$$
\begin{array}{r}
\frac{2}{5} \times \frac{3}{2}=\frac{6}{10} \\
\frac{2}{7} \times \frac{-1}{8}=\frac{-2}{56} \\
\frac{-3}{7} \times \frac{2}{-5}=\frac{-6}{-35}
\end{array}
$$

Multiplying Fractions

Multiplying fractions is as easy as multiplying integers. We just multiply the numerators together, and multiply the denominators together as follows:

$$
\begin{gathered}
\frac{2}{5} \times \frac{3}{2}=\frac{6}{10} \\
\frac{2}{7} \times \frac{-1}{8}=\frac{-2}{56} \\
\frac{-3}{7} \times \frac{2}{-5}=\frac{-6}{-35}=\frac{6}{35}
\end{gathered}
$$

Dividing Fractions

Dividing fractions is as easy as multiplying them. We change the division sign to a multiplication sign by inverting the fraction we are dividing by.

Dividing Fractions

Dividing fractions is as easy as multiplying them. We change the division sign to a multiplication sign by inverting the fraction we are dividing by.

$$
\frac{2}{6} \div \frac{1}{4}
$$

Dividing Fractions

Dividing fractions is as easy as multiplying them. We change the division sign to a multiplication sign by inverting the fraction we are dividing by.

$$
\begin{array}{r}
\frac{2}{6} \div \frac{1}{4} \\
=\quad \frac{2}{6} \times \frac{4}{1}
\end{array}
$$

Dividing Fractions

Dividing fractions is as easy as multiplying them. We change the division sign to a multiplication sign by inverting the fraction we are dividing by.

$$
\begin{aligned}
& \frac{2}{6} \div \frac{1}{4} \\
= & \frac{2}{6} \times \frac{4}{1} \\
= & \frac{8}{6}
\end{aligned}
$$

Dividing Fractions

$$
\frac{3}{4} \div 2
$$

Dividing Fractions

$$
\begin{aligned}
& \frac{3}{4} \div 2 \\
= & \frac{3}{4} \div \frac{2}{1}
\end{aligned}
$$

Dividing Fractions

$$
\begin{aligned}
& \frac{3}{4} \div 2 \\
= & \frac{3}{4} \div \frac{2}{1} \\
= & \frac{3}{4} \times \frac{1}{2}
\end{aligned}
$$

Dividing Fractions

$$
\begin{aligned}
& \frac{3}{4} \div 2 \\
= & \frac{3}{4} \div \frac{2}{1} \\
= & \frac{3}{4} \times \frac{1}{2} \\
= & \frac{3}{8}
\end{aligned}
$$

Equivalent Fractions

Earlier, we saw that

$\frac{2}{5} \times \frac{3}{2}=\frac{6}{10}$

Equivalent Fractions

Earlier, we saw that

$$
\frac{2}{5} \times \frac{3}{2}=\frac{6}{10}
$$

Equivalent Fractions

Earlier, we saw that

$\frac{2}{5} \times \frac{3}{2}=\frac{6}{10}$

Equivalent Fractions

Earlier, we saw that

$\frac{2}{5} \times \frac{3}{2}=\frac{6}{10}$

Equivalent Fractions

Earlier, we saw that

These are equivalent fractions. We say that $\frac{3}{5}$ is the simplest form.

Equivalent Fractions

$$
\frac{12}{30}=\frac{12 \div 2}{30 \div 2}=
$$

Equivalent Fractions

$$
\frac{12}{30}=\frac{12 \div 2}{30 \div 2}=\frac{6}{15}
$$

Equivalent Fractions

$$
\frac{12}{30}=\frac{12 \div 2}{30 \div 2}=\frac{6}{15}=\frac{6 \div 3}{15 \div 3}=
$$

Equivalent Fractions

$$
\frac{12}{30}=\frac{12 \div 2}{30 \div 2}=\frac{6}{15}=\frac{6 \div 3}{15 \div 3}=\frac{2}{5}
$$

Equivalent Fractions

$$
\frac{12}{30}=\frac{12 \div 2}{30 \div 2}=\frac{6}{15}=\frac{6 \div 3}{15 \div 3}=\frac{2}{5}
$$

Is this the simplest form?

Equivalent Fractions

$$
\frac{12}{30}=\frac{12 \div 2}{30 \div 2}=\frac{6}{15}=\frac{6 \div 3}{15 \div 3}=\frac{2}{5}
$$

Is this the simplest form?
Yes, because no whole number divides into both 2 and 5 .

Equivalent Fractions

$$
\frac{12}{30}=\frac{12 \div 2}{30 \div 2}=\frac{6}{15}=\frac{6 \div 3}{15 \div 3}=\frac{2}{5}
$$

Is this the simplest form?
Yes, because no whole number divides into both 2 and 5 .
Note that we have effectively divided both sides by 6 :

$$
\frac{12}{30}=\frac{12 \div 6}{30 \div 6}=\frac{2}{5}
$$

Equivalent Fractions

$$
\frac{12}{30}=\frac{12 \div 2}{30 \div 2}=\frac{6}{15}=\frac{6 \div 3}{15 \div 3}=\frac{2}{5}
$$

Is this the simplest form?
Yes, because no whole number divides into both 2 and 5 .
Note that we have effectively divided both sides by 6 :

$$
\frac{12}{30}=\frac{12 \div 6}{30 \div 6}=\frac{2}{5}
$$

6 is the greatest common divisor of 12 and 30 . (More on this topic at the end.)

Adding and Subtracting Fractions

Addition and subtraction with fractions is easy if we are adding or subtracting fractions with the same denominators.

$$
\frac{4}{5}+\frac{3}{5}
$$

Adding and Subtracting Fractions

Addition and subtraction with fractions is easy if we are adding or subtracting fractions with the same denominators.

$$
\frac{4}{5}+\frac{3}{5}
$$

0	1	2	

Adding and Subtracting Fractions

Addition and subtraction with fractions is easy if we are adding or subtracting fractions with the same denominators.

$$
\frac{4}{5}+\frac{3}{5}
$$

Adding and Subtracting Fractions

Addition and subtraction with fractions is easy if we are adding or subtracting fractions with the same denominators.

$$
\frac{4}{5}+\frac{3}{5}
$$

Adding and Subtracting Fractions

Addition and subtraction with fractions is easy if we are adding or subtracting fractions with the same denominators.

$$
\frac{4}{5}+\frac{3}{5}
$$

Adding and Subtracting Fractions

Addition and subtraction with fractions is easy if we are adding or subtracting fractions with the same denominators.

$$
\frac{4}{5}+\frac{3}{5}
$$

Adding and Subtracting Fractions

Addition and subtraction with fractions is easy if we are adding or subtracting fractions with the same denominators.

Adding and Subtracting Fractions

Addition and subtraction with fractions is easy if we are adding or subtracting fractions with the same denominators.

$$
\frac{4}{5}+\frac{3}{5}
$$

Adding and Subtracting Fractions

Addition and subtraction with fractions is easy if we are adding or subtracting fractions with the same denominators.

Adding and Subtracting Fractions

$$
\frac{4}{5}-\frac{7}{5}
$$

Adding and Subtracting Fractions

$$
\frac{4}{5}-\frac{7}{5}
$$

Adding and Subtracting Fractions

$$
\frac{4}{5}-\frac{7}{5}
$$

Adding and Subtracting Fractions

$$
\frac{4}{5}-\frac{7}{5}
$$

Adding and Subtracting Fractions

$$
\frac{4}{5}-\frac{7}{5}
$$

Adding and Subtracting Fractions

$$
\frac{4}{5}-\frac{7}{5}
$$

Adding and Subtracting Fractions

$$
\frac{4}{5}-\frac{7}{5}
$$

Adding and Subtracting Fractions

$$
\frac{4}{5}-\frac{7}{5}
$$

Adding and Subtracting Fractions

Adding and Subtracting Fractions

Adding and Subtracting Fractions

Adding and Subtracting Fractions

$$
\frac{4}{5}-\frac{7}{5}
$$

Adding and Subtracting Fractions

Adding and Subtracting Fractions

What if we were asked to find $\frac{1}{6}+\frac{3}{8}$?

Adding and Subtracting Fractions

$$
\text { What if we were asked to find } \frac{1}{6}+\frac{3}{8} ?
$$

This is harder, as the denominators are different...

Adding and Subtracting Fractions

What if we were asked to find $\frac{1}{6}+\frac{3}{8}$?

This is harder, as the denominators are different...
One option is to multiply the denominators together to create a common denominator:

$$
\frac{1 \times 8}{6 \times 8}+\frac{3 \times 6}{8 \times 6}
$$

Adding and Subtracting Fractions

What if we were asked to find $\frac{1}{6}+\frac{3}{8}$?

This is harder, as the denominators are different...
One option is to multiply the denominators together to create a common denominator:

$$
\begin{aligned}
& \frac{1 \times 8}{6 \times 8}+\frac{3 \times 6}{8 \times 6} \\
= & \frac{8}{48}+\frac{18}{48}
\end{aligned}
$$

Adding and Subtracting Fractions

What if we were asked to find $\frac{1}{6}+\frac{3}{8}$?
This is harder, as the denominators are different...
One option is to multiply the denominators together to create a common denominator:

$$
\begin{aligned}
& \frac{1 \times 8}{6 \times 8}+\frac{3 \times 6}{8 \times 6} \\
= & \frac{8}{48}+\frac{18}{48} \\
= & \frac{8+18}{48} \\
= & \frac{26}{48}
\end{aligned}
$$

Adding and Subtracting Fractions

Adding and Subtracting Fractions

$$
\begin{aligned}
& \frac{26}{48} \\
= & \frac{26 \div 2}{48 \div 2} \\
= & \frac{13}{24}
\end{aligned}
$$

Adding and Subtracting Fractions

$$
\begin{aligned}
& \frac{26}{48} \\
= & \frac{26 \div 2}{48 \div 2} \\
= & \frac{13}{24} \text { in simplest form }
\end{aligned}
$$

Adding and Subtracting Fractions

Note that 24 would also work as a common denominator:

$$
\frac{1 \times 4}{6 \times 4}+\frac{3 \times 3}{8 \times 3}
$$

Adding and Subtracting Fractions

Note that 24 would also work as a common denominator:

$$
\begin{aligned}
& \frac{1 \times 4}{6 \times 4}+\frac{3 \times 3}{8 \times 3} \\
= & \frac{4}{24}+\frac{9}{24} \\
= & \frac{4+9}{24} \\
= & \frac{13}{24}
\end{aligned}
$$

Adding and Subtracting Fractions

Note that 24 would also work as a common denominator:

$$
\begin{aligned}
& \frac{1 \times 4}{6 \times 4}+\frac{3 \times 3}{8 \times 3} \\
= & \frac{4}{24}+\frac{9}{24} \\
= & \frac{4+9}{24} \\
= & \frac{13}{24}
\end{aligned}
$$

24 is the lowest common multiple of 6 and 8. (More on this topic at the end.)

More examples and notes

The following slides contain more information and examples about

Equivalent Fractions Reducing fractions to simplest form
Adding and subtracting fractions
Greatest common divisor (GCD)
Least common multiple (LCM)

Equivalent Fractions: Examples

$$
\frac{1}{3}=\frac{3}{9}(\text { multiply the top and bottom by } 3)
$$

Equivalent Fractions: Examples

$$
\begin{aligned}
& \frac{1}{3}=\frac{3}{9}(\text { multiply the top and bottom by } 3) \\
& \frac{4}{5}=\frac{28}{35}(\text { multiply the top and bottom by } 7)
\end{aligned}
$$

Equivalent Fractions: Examples

$$
\begin{aligned}
& \frac{1}{3}=\frac{3}{9}(\text { multiply the top and bottom by } 3) \\
& \frac{4}{5}=\frac{28}{35}(\text { multiply the top and bottom by } 7)
\end{aligned}
$$

We can also go backwards, by dividing the top and bottom by the same thing.

Equivalent Fractions: Examples

$$
\begin{aligned}
& \frac{1}{3}=\frac{3}{9}(\text { multiply the top and bottom by } 3) \\
& \frac{4}{5}=\frac{28}{35}(\text { multiply the top and bottom by } 7)
\end{aligned}
$$

We can also go backwards, by dividing the top and bottom by the same thing.

$$
\frac{10}{20}=\frac{5}{10}(\text { divide the top and bottom by } 2)
$$

Equivalent Fractions: Examples

$$
\begin{aligned}
& \frac{1}{3}=\frac{3}{9}(\text { multiply the top and bottom by } 3) \\
& \frac{4}{5}=\frac{28}{35}(\text { multiply the top and bottom by } 7)
\end{aligned}
$$

We can also go backwards, by dividing the top and bottom by the same thing.

$$
\begin{aligned}
\frac{10}{20} & =\frac{5}{10}(\text { divide the top and bottom by } 2) \\
\frac{5}{10} & =\frac{1}{2}(\text { divide the top and bottom by } 5)
\end{aligned}
$$

Divisors

The divisors (factors) of an integer are all the numbers which you can divide that integer by to get another integer.

Divisors

The divisors (factors) of an integer are all the numbers which you can divide that integer by to get another integer.

What are the divisors of 10 ?

Divisors

The divisors (factors) of an integer are all the numbers which you can divide that integer by to get another integer.

What are the divisors of 10 ?

$$
\begin{aligned}
10 \div 1 & =10 \\
10 \div 2 & =5 \\
10 \div 5 & =2 \\
10 \div 10 & =1
\end{aligned}
$$

The divisors of 10 are $1,2,5$, and 10 .

Greatest Common Divisor GCD

Given two integers, we can ask if they have any common divisors. Of more interest, what is the largest divisor they have in common? We call this the greatest common divisor (GCD).

Greatest Common Divisor GCD

Given two integers, we can ask if they have any common divisors. Of more interest, what is the largest divisor they have in common? We call this the greatest common divisor (GCD).

What is the greatest common divisor of 45 and 60 (useful for finding the simplest

$$
\text { form of } \left.\frac{45}{60}\right) ?
$$

Greatest Common Divisor GCD

Given two integers, we can ask if they have any common divisors. Of more interest, what is the largest divisor they have in common? We call this the greatest common divisor (GCD).

What is the greatest common divisor of 45 and 60 (useful for finding the simplest

$$
\text { form of } \left.\frac{45}{60}\right) ?
$$

The divisors of 45 are 1, 3,5,9 and 15 .

Greatest Common Divisor GCD

Given two integers, we can ask if they have any common divisors. Of more interest, what is the largest divisor they have in common? We call this the greatest common divisor (GCD).

What is the greatest common divisor of 45 and 60 (useful for finding the simplest

$$
\text { form of } \left.\frac{45}{60}\right) ?
$$

The divisors of 45 are 1, 3, 5, 9 and 15 .
The divisors of 60 are $1,3,4,5,6,10,12,15,20$ and 30 .

Greatest Common Divisor GCD

Given two integers, we can ask if they have any common divisors. Of more interest, what is the largest divisor they have in common? We call this the greatest common divisor (GCD).

What is the greatest common divisor of 45 and 60 (useful for finding the simplest

$$
\text { form of } \left.\frac{45}{60}\right) ?
$$

The divisors of 45 are 1, 3,5,9 and $\underline{15}$.
The divisors of 60 are $1,3,4,5,6,10,12, \underline{15}, 20$ and 30 .
The greatest common divisor of 45 and 60 is $\mathbf{1 5}$.

Simplifying Fractions: Examples

Simplify $\frac{12}{16}$.

Simplifying Fractions: Examples

$$
\text { Simplify } \frac{12}{16} .
$$

This can be easily done in stages by dividing both 12 and 16 by 2 and then looking for other numbers that divide into the new top and bottom lines.

Simplifying Fractions: Examples

$$
\text { Simplify } \frac{12}{16} .
$$

This can be easily done in stages by dividing both 12 and 16 by 2 and then looking for other numbers that divide into the new top and bottom lines.

You could also ask "what is the GCD of 12 and 16 ?

Simplifying Fractions: Examples

$$
\text { Simplify } \frac{12}{16} \text {. }
$$

This can be easily done in stages by dividing both 12 and 16 by 2 and then looking for other numbers that divide into the new top and bottom lines.

You could also ask "what is the GCD of 12 and 16? Answer: 4.

Simplifying Fractions: Examples

$$
\text { Simplify } \frac{12}{16} .
$$

This can be easily done in stages by dividing both 12 and 16 by 2 and then looking for other numbers that divide into the new top and bottom lines.

You could also ask "what is the GCD of 12 and 16? Answer: 4.
We divide both 12 and 16 by 4 to get:

Simplifying Fractions: Examples

$$
\text { Simplify } \frac{12}{16} .
$$

This can be easily done in stages by dividing both 12 and 16 by 2 and then looking for other numbers that divide into the new top and bottom lines.

You could also ask "what is the GCD of 12 and 16? Answer: 4.
We divide both 12 and 16 by 4 to get:

$$
\frac{12}{16}=\frac{3}{4} .
$$

Adding and Subtracting Fractions

Find $\frac{1}{3}+\frac{4}{7}$.

Adding and Subtracting Fractions

Find $\frac{1}{3}+\frac{4}{7}$.

$$
\frac{1 \times 7}{3 \times 7}+\frac{4 \times 3}{7 \times 3}
$$

Adding and Subtracting Fractions

$$
\text { Find } \frac{1}{3}+\frac{4}{7}
$$

$$
\begin{aligned}
& \frac{1 \times 7}{3 \times 7}+\frac{4 \times 3}{7 \times 3} \\
= & \frac{7}{21}+\frac{12}{21} \\
= & \frac{7+12}{21} \\
= & \frac{19}{21}
\end{aligned}
$$

Multiples

The multiples of an integer are all the numbers which have the integer as a divisor.

Multiples

The multiples of an integer are all the numbers which have the integer as a divisor.
What are the multiples of 4 ?

Multiples

The multiples of an integer are all the numbers which have the integer as a divisor.
What are the multiples of 4 ?
The multiples of 4 are $4,8,12,16,20,24, \ldots$.

Multiples

The multiples of an integer are all the numbers which have the integer as a divisor.
What are the multiples of 4 ?
The multiples of 4 are $4,8,12,16,20,24, \ldots$.
What are the multiples of 5 ?

Multiples

The multiples of an integer are all the numbers which have the integer as a divisor.
What are the multiples of 4 ?
The multiples of 4 are $4,8,12,16,20,24, \ldots$.
What are the multiples of 5 ?
The multiples of 5 are $5,10,15,20,25,30, \ldots$.

Least Common Multiple LCM

Given two integers, we can ask if they have any common multiples. It turns out that they always do. Of more interest, what is the smallest multiple they have in common? We call this the least common multiple (LCM).

Least Common Multiple LCM

Given two integers, we can ask if they have any common multiples. It turns out that they always do. Of more interest, what is the smallest multiple they have in common? We call this the least common multiple (LCM).

What is the least common multiple of 4 and 5 ?

Least Common Multiple LCM

Given two integers, we can ask if they have any common multiples. It turns out that they always do. Of more interest, what is the smallest multiple they have in common? We call this the least common multiple (LCM).

What is the least common multiple of 4 and 5 ?
The multiples of 4 are $4,8,12,16,20,24,28,32,36,40, \ldots$.

Least Common Multiple LCM

Given two integers, we can ask if they have any common multiples. It turns out that they always do. Of more interest, what is the smallest multiple they have in common? We call this the least common multiple (LCM).

What is the least common multiple of 4 and 5 ?
The multiples of 4 are $4,8,12,16,20,24,28,32,36,40, \ldots$.
The multiples of 5 are $5,10,15,20,25,30,35,40, \ldots$.

Least Common Multiple LCM

Given two integers, we can ask if they have any common multiples. It turns out that they always do. Of more interest, what is the smallest multiple they have in common? We call this the least common multiple (LCM).

What is the least common multiple of 4 and 5 ?
The multiples of 4 are $4,8,12,16, \underline{20}, 24,28,32,36,40, \ldots$.
The multiples of 5 are $5,10,15, \underline{20}, 25,30,35,40, \ldots$.
The least common multiple of 4 and 5 is $\mathbf{2 0}$.

Using STUDYSmarter Resources

This resource was developed for UWA students by the STUDYSmarter team for the numeracy program. When using our resources, please retain them in their original form with both the STUDYSmarter heading and the UWA crest.

The University of WESTERN AUSTRALIA
$\oplus(()) \ominus$

