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Introduction
These slides are designed to help you calculate with different types of numbers
and fractions.

Workshop resources: These slides are available online:

www.studysmarter.uwa.edu.au → Numeracy and Maths → Online Resources

Next Workshop: See your Workshop Calendar →

www.studysmarter.uwa.edu.au

Drop-in Study Sessions: Monday, Wednesday, Friday, 10am-12pm, Room 2202,
Second Floor, Social Sciences South Building, every week.

Email: geoff.coates@uwa.edu.au
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Counting Numbers

Historically, numbers were first used to count things (sheep, children, etc).

1, 2, 3, 4, 5, ...

Eg. “3 children”, “15 sheep”.

What if you have no children or lose all your sheep?

Then we need a new number, zero, which we write as 0.
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Types of Numbers

Like many things, there is a classification system for groups (or sets) of numbers.

The set of numbers we use depends on the context of the problem.

The Counting Numbers: {1, 2, 3, 4, 5, . . . }

The Whole Numbers: {0, 1, 2, 3, 4, 5, . . . }
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Negative Numbers

If your bank statement says account balance = -$50
then this means you owe the bank $50.

So, negative numbers can be used to represent debt. (Banks use negative
numbers quite a lot!)

In Physics, a negative number means a quantity acting in the opposite direction.
For example:

N ←− −→
“3m North” “−3m North” or “3m South”

So, negative numbers can be used to represent direction.
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Negative Numbers

Take the set of whole numbers and include the negative of each number. This
new set is the set of integers.

The Integers: {. . . ,−2,−1, 0, 1, 2, . . . }

This set continues indefinitely in both directions.
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The Number Line

Integers sit nicely on the number line.

� -

-5 -4 -3 -2 -1 0 1 2 3 4 5

s
There are also numbers between the integers.

For example, the number “one-half”, which we write “ 1
2 ”, is exactly halfway

between 0 and 1.

When the numerator (top line) is smaller than the denominator (bottom line)
we call this a proper fraction.
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Fractions

The number “four and two-fifths” is written “4 2
5 ” and sits between 4 and 5.

� -

-5 -4 -3 -2 -1 0 1 2 3 4 5

To pinpoint this number, imagine splitting up the interval between 4 and 5

into fifths (five equal pieces).

Now, starting at 4, move right along two of these fifths.

s

We call 4 2
5 a mixed numeral, as it is the sum of an integer and a proper fraction.
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Fractions

Here are some more examples of mixed numerals.

� -

-5 -4 -3 -2 -1 0 1 2 3 4 5

6

2 1
2

6

−1 2
3

6

1 1
4
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Converting Mixed Numerals to Improper Fractions

Convert the mixed numeral 2 1
2 to an improper fraction (numerator larger than

denominator).

So we have two wholes and one half:

or two lots of two halves (making four) plus one half is five halves:

2
1

2
=

5

2
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Converting Mixed Numerals to Improper Fractions

4
1

3
=

13

3

2
1

4
=

9

4

1
1

6
=

7

6

10
1

5
=

51

5

geoff.coates@uwa.edu.au Numbers and Fractions 12 / 52



Converting Mixed Numerals to Improper Fractions

4
1

3
=

13

3

2
1

4
=

9

4

1
1

6
=

7

6

10
1

5
=

51

5

geoff.coates@uwa.edu.au Numbers and Fractions 12 / 52



Converting Mixed Numerals to Improper Fractions

4
1

3
=

13

3

2
1

4
=

9

4

1
1

6
=

7

6

10
1

5
=

51

5

geoff.coates@uwa.edu.au Numbers and Fractions 12 / 52



Converting Mixed Numerals to Improper Fractions

4
1

3
=

13

3

2
1

4
=

9

4

1
1

6
=

7

6

10
1

5
=

51

5

geoff.coates@uwa.edu.au Numbers and Fractions 12 / 52



Converting Mixed Numerals to Improper Fractions

4
1

3
=

13

3

2
1

4
=

9

4

1
1

6
=

7

6

10
1

5
=

51

5

geoff.coates@uwa.edu.au Numbers and Fractions 12 / 52



Converting Mixed Numerals to Improper Fractions

4
1

3
=

13

3

2
1

4
=

9

4

1
1

6
=

7

6

10
1

5
=

51

5

geoff.coates@uwa.edu.au Numbers and Fractions 12 / 52



Converting Mixed Numerals to Improper Fractions

4
1

3
=

13

3

2
1

4
=

9

4

1
1

6
=

7

6

10
1

5
=

51

5

geoff.coates@uwa.edu.au Numbers and Fractions 12 / 52



Converting Mixed Numerals to Improper Fractions

4
1

3
=

13

3

2
1

4
=

9

4

1
1

6
=

7

6

10
1

5
=

51

5

geoff.coates@uwa.edu.au Numbers and Fractions 12 / 52



More Types of Numbers

Any number which can be written as one integer divided by another integer (aside
from 0) is called a rational number:

1

2

−13

3

1

1, 000, 000, 000

Are integers themselves rational numbers?

Yes: 8 =
8

1
=

integer

integer
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More Types of Numbers

Any number which cannot be written as one integer divided by another integer is
called an irrational number.

Irrational numbers can be identified from their decimal form because their decimal
places do not terminate or form a recurring pattern.

A well known irrational number is π = 3.1415 . . ..

Another irrational number is
√

2 = 1.4142 . . ..

The combination of all rational and irrational numbers is the set of real numbers.
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More Types of Numbers

Real numbers can all be placed on a number line:

� -

-5 -4 -3 -2 -1 0 1 2 3 4 5

6

2 1
2

6

-4

6

π
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Types of Numbers

Counting Numbers: {1, 2, 3, 4, 5, . . . }

Whole Numbers: {0, 1, 2, 3, 4, 5, . . . }

Integers: {. . . ,−2,−1, 0, 1, 2, . . . }

Rational Numbers:
{

integer
integer

}
, Irrational Numbers

Real Numbers: {Rational Numbers, Irrational Numbers}
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Operations

Operation: A way to combine numbers and get a new number.

Addition is an operation.

Examples:

3 + 2 = 5

2 + 3 = 5

Addition is a commutative operation because the order does not matter.
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Addition is Commutative

Addition is commutative.

Multiplication is commutative.
Subtraction is not commutative.

Division is not commutative.

4 + 9 = 13

9 + 4 = 13

3× 6 = 18

6× 3 = 18

8− 6 = 2

6− 8 = −2

8÷ 2 = 4

2÷ 8 = 2/8
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Identities

Adding 0 to a number leaves it unchanged.

Subtracting a number from itself gives 0.

0 is the identity for addition.

Multiplying a number by leaves it unchanged.

1 is the identity for multiplication.
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Rules of Division

You can not divide by zero.

10÷ 0 is “undefined”

Zero divided by anything (except zero) is zero.

0÷ 2 = 0

0÷ 10 = 0

0÷ 0 is “indeterminate”
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Rules for Multiplying Negatives

negative × negative = positive

negative × positive = negative

−3×−2 = 6

−4×−1 = 4

6×−3 = − 18

−2× 4 = − 8

geoff.coates@uwa.edu.au Numbers and Fractions 21 / 52



Rules for Multiplying Negatives

negative × negative = positive

negative × positive = negative

−3×−2 = 6

−4×−1 = 4

6×−3 = − 18

−2× 4 = − 8

geoff.coates@uwa.edu.au Numbers and Fractions 21 / 52



Rules for Multiplying Negatives

negative × negative = positive

negative × positive = negative

−3×−2 =

6

−4×−1 = 4

6×−3 = − 18

−2× 4 = − 8

geoff.coates@uwa.edu.au Numbers and Fractions 21 / 52



Rules for Multiplying Negatives

negative × negative = positive

negative × positive = negative

−3×−2 = 6

−4×−1 = 4

6×−3 = − 18

−2× 4 = − 8

geoff.coates@uwa.edu.au Numbers and Fractions 21 / 52



Rules for Multiplying Negatives

negative × negative = positive

negative × positive = negative

−3×−2 = 6

−4×−1 =

4

6×−3 = − 18

−2× 4 = − 8

geoff.coates@uwa.edu.au Numbers and Fractions 21 / 52



Rules for Multiplying Negatives

negative × negative = positive

negative × positive = negative

−3×−2 = 6

−4×−1 = 4

6×−3 = − 18

−2× 4 = − 8

geoff.coates@uwa.edu.au Numbers and Fractions 21 / 52



Rules for Multiplying Negatives

negative × negative = positive

negative × positive = negative

−3×−2 = 6

−4×−1 = 4

6×−3 =

− 18

−2× 4 = − 8

geoff.coates@uwa.edu.au Numbers and Fractions 21 / 52



Rules for Multiplying Negatives

negative × negative = positive

negative × positive = negative

−3×−2 = 6

−4×−1 = 4

6×−3 = − 18

−2× 4 = − 8

geoff.coates@uwa.edu.au Numbers and Fractions 21 / 52



Rules for Multiplying Negatives

negative × negative = positive

negative × positive = negative

−3×−2 = 6

−4×−1 = 4

6×−3 = − 18

−2× 4 =

− 8

geoff.coates@uwa.edu.au Numbers and Fractions 21 / 52



Rules for Multiplying Negatives

negative × negative = positive

negative × positive = negative

−3×−2 = 6

−4×−1 = 4

6×−3 = − 18

−2× 4 = − 8

geoff.coates@uwa.edu.au Numbers and Fractions 21 / 52



Rules for Dividing Negatives

negative ÷ negative = positive

negative ÷ positive = negative

positive ÷ negative = negative

−10÷−2 = 5

16÷−2 = − 8

−20÷ 4 = − 5
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Indices (Powers)

Indices provide a short way of representing repeated multiplication of a fixed
number.

Instead of writing 5× 5 we may write 52, and we say “five squared”.

Instead of writing 9× 9× 9 we may write 93, and we say “nine cubed”.

Instead of writing 3× 3× 3× 3 we may write 34, and we say “three to the power
of four”.
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Indices (Powers)

So when we see 34, this really means 3× 3× 3× 3, which really means 81.

When we see (−2)2, this really means −2×−2 which equals positive 4.

negative2 = positive
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Indices (Powers)

When we see (−3)3 we know that this means

−3×−3×−3. So

−3×−3︸ ︷︷ ︸ × -3

= 9 × -3

= -27

negative3 = negative
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Indices (Powers)

There is a pattern here.

negativeeven =

positive

negativeodd = negative

geoff.coates@uwa.edu.au Numbers and Fractions 26 / 52



Indices (Powers)

There is a pattern here.

negativeeven = positive

negativeodd = negative

geoff.coates@uwa.edu.au Numbers and Fractions 26 / 52



Indices (Powers)

There is a pattern here.

negativeeven = positive

negativeodd =

negative

geoff.coates@uwa.edu.au Numbers and Fractions 26 / 52



Indices (Powers)

There is a pattern here.

negativeeven = positive

negativeodd = negative

geoff.coates@uwa.edu.au Numbers and Fractions 26 / 52



Calculating with the Number Line

Use the number line to find 1−3+5.

� -

-5 -4 -3 -2 -1 0 1 2 3 4 5

We start at 1,

e
then move 3 left,

���

then 5 right.

- - - - -

The answer is 3.

u
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Rule for Subtracting Negatives

number − −number = number + number

5−(−3) 6−−4 −2−(−3)

= 5+3 = 6+4 = −2+3

= 8 = 10 = 1
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Combined Calculations

What if we are asked to calculate 4× 3 + 8÷ 2− 3× 1 ?

When we have a mix of operations, the order is very important.

The rule we follows is BIMDAS:

Brackets, Indices, Multiplication/Division, Addition/Subtraction.

We do the calculation step by step in this order.
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Combined Calculations: Example

Use BIMDAS to calculate: 4× 3 + 8÷ 2− 3× 1

→ There are no brackets here, so we can ignore B.
→ There are no indices either, so we can ignore I.
→ M/D is next, and we can see there are three of these:

4× 3︸ ︷︷ ︸ + 8÷ 2︸ ︷︷ ︸ − 3× 1︸ ︷︷ ︸
= 12 + 4 − 3

→ Now when we get to A/S, just do it the way we did with our number line.

The answer is 13.
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Combined Calculations: Example

Use BIMDAS to calculate: 32 ×−2 + (6− 8÷ 2)− 3× (1− 3)

This looks fairly horrible. We use the step by step process of BIMDAS.

→ B (brackets) is first. The first bracket requires BIMDAS to be applied to it, by
first dividing and then subtracting.

32 ×−2 + − 3× (1− 3︸ ︷︷ ︸)

= 32 ×−2 + (6− 4) − 3× (−2)

= 32 ×−2 + (2) − 3× (−2)

We can now drop the brackets:

32 ×−2 + 2− 3×−2
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Combined Calculations: Example

32 ×−2 + 2− 3×−2

→ I (Indices) is next.

32 ×− 2 + 2− 3×−2

= 9 ×− 2 + 2− 3×−2

→ D/M are next.

9×−2︸ ︷︷ ︸ + 2 − 3×−2︸ ︷︷ ︸
= −18 + 2 − −6

→ A/S are last.

The answer is −10
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Fractions with Negatives

Negatives in fractions are free to move around as follows

−10

2
=

10

−2
= −10

2

Remember that fraction bars represent division so, if both the numerator and
denominator are negative, the result is positive:

−10

−2
=

10

2
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Multiplying Fractions

Multiplying fractions is as easy as multiplying integers. We just multiply the
numerators together, and multiply the denominators together as follows:

2

5
× 3

2
=

6

10

2

7
× −1

8
=
−2

56

−3

7
× 2

−5
=
−6

−35
=

6

35
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Dividing Fractions

Dividing fractions is as easy as multiplying them. We change the division sign
to a multiplication sign by inverting the fraction we are dividing by.

2

6
÷ 1

4

=
2

6
× 4

1

=
8

6
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Dividing Fractions

3

4
÷ 2

=
3

4
÷ 2

1

=
3

4
× 1

2

=
3

8
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Equivalent Fractions

Earlier, we saw that

2

5
× 3

2
=

6

10

0 1 26
10

u
However,

0 1 23
5

u
6

10
=

3

5

These are equivalent fractions. We say that 3
5 is the simplest form.
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Equivalent Fractions

12

30
=

12÷2

30÷2
=

6

15
=

6÷3

15÷3
=

2

5

Is this the simplest form?
Yes, because no whole number divides into both 2 and 5.

Note that we have effectively divided both sides by 6:

12

30
=

12÷6

30÷6
=

2

5

6 is the greatest common divisor of 12 and 30. (More on this topic at the end.)
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Adding and Subtracting Fractions

Addition and subtraction with fractions is easy if we are adding or subtracting
fractions with the same denominators.

4

5
+

3

5

0 1 24
5

u
- - -

7
5

e
4

5
+

3

5

=
4 + 3

5

=
7

5
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Adding and Subtracting Fractions

4

5
− 7

5

-1 0 14
5

u
�������

− 3
5

e
4

5
− 7

5

=
4− 7

5

=
−3

5
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Adding and Subtracting Fractions

What if we were asked to find
1

6
+

3

8
?

This is harder, as the denominators are different...

One option is to multiply the denominators together to create a common
denominator:

1×8

6×8
+

3×6

8×6

=
8

48
+

18

48

=
8 + 18

48

=
26

48
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Adding and Subtracting Fractions

26

48

=
26÷2

48÷2

=
13

24
in simplest form
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Adding and Subtracting Fractions

Note that 24 would also work as a common denominator:

1×4

6×4
+

3×3

8×3

=
4

24
+

9

24

=
4 + 9

24

=
13

24

24 is the lowest common multiple of 6 and 8. (More on this topic at the end.)
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More examples and notes

The following slides contain more information and examples about

Equivalent Fractions
Reducing fractions to simplest form

Adding and subtracting fractions
Greatest common divisor (GCD)
Least common multiple (LCM)
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Equivalent Fractions: Examples

1

3
=

3

9
(multiply the top and bottom by 3)

4

5
=

28

35
(multiply the top and bottom by 7)

We can also go backwards, by dividing the top and bottom by the same thing.

10

20
=

5

10
(divide the top and bottom by 2)

5

10
=

1

2
(divide the top and bottom by 5)
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Divisors

The divisors (factors) of an integer are all the numbers which you can divide that
integer by to get another integer.

What are the divisors of 10?

10÷ 1 = 10

10÷ 2 = 5

10÷ 5 = 2

10÷ 10 = 1

The divisors of 10 are 1, 2, 5, and 10.
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Greatest Common Divisor GCD

Given two integers, we can ask if they have any common divisors. Of more
interest, what is the largest divisor they have in common? We call this the

greatest common divisor (GCD).

What is the greatest common divisor of 45 and 60 (useful for finding the simplest

form of
45

60
)?

The divisors of 45 are 1, 3, 5, 9 and .

The divisors of 60 are 1, 3, 4, 5, 6, 10, 12, , 20 and 30.

The greatest common divisor of 45 and 60 is 15.
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Simplifying Fractions: Examples

Simplify
12

16
.

This can be easily done in stages by dividing both 12 and 16 by 2 and then
looking for other numbers that divide into the new top and bottom lines.

You could also ask “what is the GCD of 12 and 16? Answer: 4.

We divide both 12 and 16 by 4 to get:

12

16
=

3

4
.
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Adding and Subtracting Fractions

Find
1

3
+

4

7
.

1×7

3×7
+

4×3

7×3

=
7

21
+

12

21

=
7 + 12

21

=
19

21
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Multiples

The multiples of an integer are all the numbers which have the integer as a divisor.

What are the multiples of 4?

The multiples of 4 are 4, 8, 12, 16, 20, 24, ....

What are the multiples of 5?

The multiples of 5 are 5, 10, 15, 20, 25, 30, ....
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Least Common Multiple LCM

Given two integers, we can ask if they have any common multiples. It turns out
that they always do. Of more interest, what is the smallest multiple they have in

common? We call this the least common multiple (LCM).

What is the least common multiple of 4 and 5?

The multiples of 4 are 4, 8, 12, 16, , 24, 28, 32, 36, 40, ... .

The multiples of 5 are 5, 10, 15, , 25, 30, 35, 40, ... .

The least common multiple of 4 and 5 is 20.
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Using STUDYSmarter Resources

This resource was developed for UWA students by the STUDYSmarter team for
the numeracy program. When using our resources, please retain them in their

original form with both the STUDYSmarter heading and the UWA crest.
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