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Reading Material 
 

This material is designed to remind you of some of the basic number patterns you 
have studied previously and to extend some of the ideas beyond what you have 
encountered in the classroom. 
 
The investigation will be based on the three areas of square numbers, Pythagorean 
triples and the Fibonacci sequence. It will involve algebraic and numerical 
exploration of the patterns, but will not be strictly limited to the material or 
relationships explored here.  
 
 
 
 
 
 
 
 
  



Square numbers 
 
From Wikipedia, the free encyclopedia: http://en.wikipedia.org/wiki/Square_number 
 

In mathematics, a square number or perfect square is an integer that is the square of an integer;[1] 
in other words, it is the product of some integer with itself. For example, 9 is a square number, 

since it can be written as 3 × 3. 

The usual notation for the formula for the square of a number n is not the product n × n, but the 

equivalent exponentiation n2, usually pronounced as "n squared". The name square number 
comes from the name of the shape; see below. 

Square numbers are non-negative. Another way of saying that a (non-negative) number is a square 

number, is that its square roots are again integers. For example, √9 = ±3, so 9 is a square number. 

A positive integer that has no perfect square divisors except 1 is called square-free. 

For a non-negative integer n, the nth square number is n2, with 02 = 0 being the 0-th one. The 

concept of square can be extended to some other number systems. If rational numbers are 
included, then a square is the ratio of two square integers, and, conversely, the ratio of two square 
integers is a square (e.g., 4/9 = (2/3)2). 
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Examples 

The squares (sequence A000290 in OEIS) smaller than 602 are: 

02 = 0 
12 = 1 
22 = 4 
32 = 9 
42 = 16 
52 = 25 
62 = 36 
72 = 49 
82 = 64 
92 = 81 
102 = 100 
112 = 121 
122 = 144 
132 = 169 
142 = 196 
152 = 225 
162 = 256 
172 = 289 
182 = 324 
192 = 361 
202 = 400 
212 = 441 
222 = 484 
232 = 529 
242 = 576 
252 = 625 
262 = 676 
272 = 729 
282 = 784 
292 = 841 

302 = 900 
312 = 961 
322 = 1024 
332 = 1089 
342 = 1156 
352 = 1225 
362 = 1296 
372 = 1369 
382 = 1444 
392 = 1521 
402 = 1600 
412 = 1681 
422 = 1764 
432 = 1849 
442 = 1936 
452 = 2025 
462 = 2116 
472 = 2209 
482 = 2304 
492 = 2401 
502 = 2500 
512 = 2601 
522 = 2704 
532 = 2809 
542 = 2916 
552 = 3025 
562 = 3136 
572 = 3249 
582 = 3364 
592 = 3481 
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The difference between any perfect square and its predecessor is given by the identity  

. 

Equivalently, it is possible to count up square numbers by adding together the last square, the last 

square's root, and the current root, that is, . 

Properties 

The number m is a square number if and only if one can compose a square of m equal (lesser) 
squares: 

m = 12 = 1 
 

m = 22 = 4 
 

m = 32 = 9 
 

m = 42 = 16 

 

m = 52 = 25 

 

Note: White gaps between squares serve only to improve visual perception. 
There must be no gaps between actual squares. 

The unit of area is defined as the area of unit square (1 × 1). Hence, a square with side length n 

has area n2. 

The expression for the nth square number is n2. This is also equal to the sum of the first n odd 

numbers as can be seen in the above pictures, where a square results from the previous one by 
adding an odd number of points (shown in magenta). The formula follows: 

 

So for example, 52 = 25 = 1 + 3 + 5 + 7 + 9. 

  

http://en.wikipedia.org/wiki/Area
http://en.wikipedia.org/wiki/Unit_square
http://en.wikipedia.org/wiki/Odd_number
http://en.wikipedia.org/wiki/Odd_number
http://en.wikipedia.org/wiki/File:Square_number_1.png
http://en.wikipedia.org/wiki/File:Square_number_4.png
http://en.wikipedia.org/wiki/File:Square_number_9.png
http://en.wikipedia.org/wiki/File:Square_number_16.png
http://en.wikipedia.org/wiki/File:Square_number_25.png


There are several recursive methods for computing square numbers. For example, the nth square 
number can be computed from the previous square by  

. Alternatively, the nth square 

number can be calculated from the previous two by doubling the (n − 1)-th square, subtracting 

the (n − 2)-th square number, and adding 2, because n2 = 2(n − 1)2 − (n − 2)2 + 2. For example, 

2 × 52 − 42 + 2 = 2 × 25 − 16 + 2 = 50 − 16 + 2 = 36 = 62. 

A square number is also the sum of two consecutive triangular numbers. The sum of two 
consecutive square numbers is a centered square number. Every odd square is also a centered 
octagonal number. 

Another property of a square number is that it has an odd number of positive divisors, while other 
natural numbers have an even number of positive divisors. An integer root is the only divisor that 
pairs up with itself to yield the square number, while other divisors come in pairs. 

Lagrange's four-square theorem states that any positive integer can be written as the sum of four 

or fewer perfect squares. Three squares are not sufficient for numbers of the form 4k(8m + 7). A 

positive integer can be represented as a sum of two squares precisely if its prime factorization 

contains no odd powers of primes of the form 4k + 3. This is generalized by Waring's problem. 

A square number can end only with digits 0, 1, 4, 6, 9, or 25 in base 10, as follows: 

1. If the last digit of a number is 0, its square ends in an even number of 0s (so at least 00) 
and the digits preceding the ending 0s must also form a square. 

2. If the last digit of a number is 1 or 9, its square ends in 1 and the number formed by its 
preceding digits must be divisible by four. 

3. If the last digit of a number is 2 or 8, its square ends in 4 and the preceding digit must be 
even. 

4. If the last digit of a number is 3 or 7, its square ends in 9 and the number formed by its 
preceding digits must be divisible by four. 

5. If the last digit of a number is 4 or 6, its square ends in 6 and the preceding digit must be 
odd. 

6. If the last digit of a number is 5, its square ends in 25 and the preceding digits must be 0, 2, 
06, or 56. 

In base 16, a square number can end only with 0, 1, 4 or 9 and 

 in case 0, only 0, 1, 4, 9 can precede it, 
 in case 4, only even numbers can precede it. 

In general, if a prime p divides a square number m then the square of p must also divide m; if p 

fails to divide m∕p, then m is definitely not square. Repeating the divisions of the previous 

sentence, one concludes that every prime must divide a given perfect square an even number of 

times (including possibly 0 times). Thus, the number m is a square number if and only if, in its 
canonical representation, all exponents are even. 
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Squarity testing can be used as alternative way in factorization of large numbers. Instead of testing 

for divisibility, test for squarity: for given m and some number k, if k2 − m is the square of an 

integer n then k − n divides m. (This is an application of the factorization of a difference of two 

squares.) For example, 1002 − 9991 is the square of 3, so consequently 100 − 3 divides 9991. 

This test is deterministic for odd divisors in the range from k − n to k + n where k covers some 

range of natural numbers k ≥ √m. 

A square number cannot be a perfect number. 

The sum of the series of power numbers 

 

can also be represented by the formula 

 

The first terms of this series (the square pyramidal numbers) are: 

0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 
2870, 3311, 3795, 4324, 4900, 5525, 6201... (sequence A000330 in OEIS). 

All fourth powers, sixth powers, eighth powers and so on are perfect squares. 

Special cases 

 If the number is of the form m5 where m represents the preceding digits, its square is n25 

where n = m × (m + 1) and represents digits before 25. For example the square of 65 can 

be calculated by n = 6 × (6 + 1) = 42 which makes the square equal to 4225. 

 If the number is of the form m0 where m represents the preceding digits, its square is n00 

where n = m2. For example the square of 70 is 4900. 

 If the number has two digits and is of the form 5m where m represents the units digit, its 

square is AABB where AA = 25 + m and BB = m2. Example: To calculate the square of 57, 

25 + 7 = 32 and 72 = 49, which means 572 = 3249. 
 If the number ends in 5, its square will end in 5; similarly for ending in 25, 625, 0625, 

90625, ... 8212890625, etc. If the number ends in 6, its square will end in 6, similarly for 
ending in 76, 376, 9376, 09376, ... 1787109376. For example, the square of 55376 is 
3066501376, both ending in 376. (The numbers 5, 6, 25, 76, etc. are called automorphic 
numbers. They are sequence A003226 in the OEIS.) 
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Odd and even square numbers 

Squares of even numbers are even (and in fact divisible by 4), since (2n)2 = 4n2. 

Squares of odd numbers are odd, since (2n + 1)2 = 4(n2 + n) + 1. 

It follows that square roots of even square numbers are even, and square roots of odd square 
numbers are odd. 

As all even square numbers are divisible by 4, the even numbers of the form 4n + 2 are not 

square numbers. 

As all odd square numbers are of the form 4n + 1, the odd numbers of the form 4n + 3 are not 

square numbers. 

Squares of odd numbers are of the form 8n + 1, since (2n + 1)2 = 4n(n + 1) + 1 and n(n + 1) is 
an even number. 

Every odd perfect square is a centered octagonal number. The difference between any two odd 
perfect squares is a multiple of 8. The difference between 1 and any higher odd perfect square 
always is eight times a triangular number, while the difference between 9 and any higher odd 
perfect square is eight times a triangular number minus eight. Since all triangular numbers have an 

odd factor, but no two values of 2n differ by an amount containing an odd factor, the only perfect 

square of the form 2n - 1 is 1, and the only perfect square of the form 2n + 1 is 9. 
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Pythagorean Triples Reading 
 
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html#section3 

3.1 Hypotenuse and Longest side are consecutive  

3, 4, 5 

5, 12, 13 

7, 24, 25 

9, 40, 41 

11, 60, 61 

 
The first and simplest Pythagorean triangle is the 3, 4, 5 triangle. Also near the top of the list is 5, 
12, 13. In both of these the longest side and the hypotenuse are consecutive integers.  
The list here shows there are more. 
Can you spot the pattern? 
 

Can we find a formula for these triples? 
 

You will have noticed that the smallest sides are the odd numbers 3, 5, 7, 9,... So the smallest sides 
are of the form 2i+1. 
The other sides, as a series are 4, 12, 24, 40, 60... Can we find a formula here? 
We notice they are all multiples of 4: 4×1, 4×3, 4×6, 4×10, 4×15,.. . The series of multiples: 1, 3, 6, 
10, 15,... are the Triangle Numbers with a formula i(i+1)/2.  
So our second sides are 4 times each of these, or, simply, just 2i(i+1). 
The third side is just one more than the second side: 2i(i+1)+1, so our formula is as follows:  

shortest side = 2i+1; longest side = 2i(i+1); hypotenuse = 1+2i(i+1)  
Check now that the sum of the squares of the two sides is the same as the square of the 
hypotenuse (Pythagoras's Theorem).  

i a:2i+1 b:2i(i+1) h=b+1 

1 3 2×1×2=4 5 

2 5 2×2×3=12 13 

3 7 2×3×4=24 25 

4 9 2×4×5=40 41 

5 11 2×5×6=60 61 

6 13 2×6×7=84 85 

7 15 2×7×8=112 113 

Bill Batchelor points out that the sum of the two consecutive sides is 4 i2 + 4 i + 1 which is just the 
square of the smallest side. 
This gives us an alternative method of generating these triples:  

 Take an odd number as the smallest side: e.g. 9 
 square it (81) - which will be another odd number 
 split the square into two halves (40·5), rounding one down (40) and the other rounded up 

(41), to form the other two sides (9, 40, 41) 
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Alternatively, let's look at the m,n values for each of these triples. Since the hypotenuse is one 
more than a leg, the 3 sides have no common factor so are primitive and therefore all of them do 
have m,n values:  

Triple m n 

3, 4, 5 2 1 

5, 12, 13 3 2 

7, 24, 25 4 3 

9, 40, 41 5 4 

11, 60, 61 6 5 

It is easy to see that m = n + 1. 
The m,n formula in this case gives  
a = m2 – n2 = (n+1)2 – n2 = 2 n + 1 
b = 2 m n = 2 (n+1) n = 2 n2 + 2 n 
h = m2 + n2 = (n+1)2 + n2 = 2 n2 + 2 n + 1  
So h is b+1 and the pattern is always true:  

if m = n+1 in the m,n formula then it generates a (primitive) triple with hypotenuse = 1 + the 
longest leg.  

Are these all there are? Perhaps there are other m,n values with a leg and hypotenuse consecutive 
numbers. In fact, they are all given by the formula above because:  
The triangles must be primitive so we know they have an m,n form. 
h = m2 + n2 could be either one more than either m2 – n2 or 2 m n:  

 If h = m2 + n2 = (m2 – n2) + 1  
then, taking m2 from both sides: n2 = – n2 + 1 
2 n2 = 1 or n2 = 1/2 and this is not possible for a whole number n  
So h is never a + 1. 

 If h = m2 + n2 = 2 m n + 1 then 
m2 – 2 m n + n2 = 1 which is the same as 
(m – n)2 = 1. Therefore 
m – n = 1 or m – n = –1 
But the hypotenuse is a positive number and is m2 – n2 so we must have so m>n and so m – 
n cannot be –1  

The only condition we can have is that m – n = 1 or m = n + 1 - there are no other triangles with 
hypotenuse one more than a leg except those generated by consecutive m n values in the m,n 
formula. 
 
See Also “The Pythagorean Theorem” pp15-19, 74,75 



Fibonnaci Sequence 
 
Fibonacci number 
From Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Fibonacci_number 
 
 

 
 

A tiling with squares whose side lengths are successive Fibonacci numbers 

 
 

An approximation of the golden spiral created by drawing circular arcs connecting the opposite 
corners of squares in the Fibonacci tiling; this one uses squares of sizes 1, 1, 2, 3, 5, 8, 13, 21, and 
34. 

In mathematics, the Fibonacci numbers or Fibonacci sequence are the numbers in the following 
integer sequence:[1][2] 

 

or (often, in modern usage): 

(sequence A000045 in OEIS). 

By definition, the first two numbers in the Fibonacci sequence are 1 and 1, or 0 and 1, depending 
on the chosen starting point of the sequence, and each subsequent number is the sum of the 
previous two. 

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation 

 

with seed values[1][2] 

 

or[3] 
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The Fibonacci sequence is named after Fibonacci. His 1202 book Liber Abaci introduced the 
sequence to Western European mathematics,[4] although the sequence had been described earlier 
in Indian mathematics.[5][6][7] By modern convention, the sequence begins either with F0 = 0 or with 
F1 = 1. The Liber Abaci began the sequence with F1 = 1, without an initial 0. 

Fibonacci numbers are closely related to Lucas numbers in that they are a complementary pair of 
Lucas sequences. They are intimately connected with the golden ratio; for example, the closest 
rational approximations to the ratio are 2/1, 3/2, 5/3, 8/5, ... . Applications include computer 
algorithms such as the Fibonacci search technique and the Fibonacci heap data structure, and 
graphs called Fibonacci cubes used for interconnecting parallel and distributed systems. They also 
appear in biological settings,[8] such as branching in trees, phyllotaxis (the arrangement of leaves 
on a stem), the fruit sprouts of a pineapple,[9] the flowering of an artichoke, an uncurling fern and 
the arrangement of a pine cone.[10] 

Origins  
 

 
 

A page of Fibonacci's Liber Abaci from the Biblioteca Nazionale di Firenze showing (in box on right) 
the Fibonacci sequence with the position in the sequence labeled in Latin and Roman numerals 
and the value in Hindu-Arabic numerals. 

The Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit prosody.[6][11] 
In the Sanskrit oral tradition, there was much emphasis on how long (L) syllables mix with the 
short (S), and counting the different patterns of L and S within a given fixed length results in the 
Fibonacci numbers; the number of patterns that are m short syllables long is the Fibonacci number 
Fm + 1.[7] 

Susantha Goonatilake writes that the development of the Fibonacci sequence "is attributed in part 
to Pingala (200 BC), later being associated with Virahanka (c. 700 AD), Gopāla (c. 1135), and 
Hemachandra (c. 1150)".[5] Parmanand Singh cites Pingala's cryptic formula misrau cha ("the two 
are mixed") and cites scholars who interpret it in context as saying that the cases for m beats 
(Fm+1) is obtained by adding a [S] to Fm cases and [L] to the Fm−1 cases. He dates Pingala before 450 
BC.[12] 
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However, the clearest exposition of the series arises in the work of Virahanka (c. 700 AD), whose 
own work is lost, but is available in a quotation by Gopala (c. 1135): 

Variations of two earlier meters [is the variation]... For example, for [a meter of length] 
four, variations of meters of two [and] three being mixed, five happens. [works out 
examples 8, 13, 21]... In this way, the process should be followed in all mātrā-vṛttas 
[prosodic combinations].[13] 

The series is also discussed by Gopala (before 1135 AD) and by the Jain scholar Hemachandra (c. 
1150). 

In the West, the Fibonacci sequence first appears in the book Liber Abaci (1202) by Leonardo of 
Pisa, known as Fibonacci.[4] Fibonacci considers the growth of an idealized (biologically unrealistic) 
rabbit population, assuming that: a newly born pair of rabbits, one male, one female, are put in a 
field; rabbits are able to mate at the age of one month so that at the end of its second month a 
female can produce another pair of rabbits; rabbits never die and a mating pair always produces 
one new pair (one male, one female) every month from the second month on. The puzzle that 
Fibonacci posed was: how many pairs will there be in one year? 

 At the end of the first month, they mate, but there is still only 1 pair. 
 At the end of the second month the female produces a new pair, so now there are 2 pairs 

of rabbits in the field. 
 At the end of the third month, the original female produces a second pair, making 3 pairs in 

all in the field. 
 At the end of the fourth month, the original female has produced yet another new pair, the 

female born two months ago produces her first pair also, making 5 pairs. 

At the end of the nth month, the number of pairs of rabbits is equal to the number of new pairs 
(which is the number of pairs in month n − 2) plus the number of pairs alive last month (n − 1). This 
is the nth Fibonacci number.[14] 

The name "Fibonacci sequence" was first used by the 19th-century number theorist Édouard 
Lucas.[15] 

List of Fibonacci numbers 

The first 21 Fibonacci numbers Fn for n = 0, 1, 2, ..., 20 are:[16] 

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 
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